
Introduction

What is C++?
 C++ is a cross-platform language that can be used to create high-

performance applications.
 C++ was developed by Bjarne Stroustrup, as an extension to the C language.
 C++ gives programmers a high level of control over system resources and

memory.
 The language was updated 3 major times in 2011, 2014, and 2017 to C++11,

C++14, and C++17.

Why Use C++
 C++ is one of the world's most popular programming languages.
 C++ can be found in today's operating systems, Graphical User Interfaces,

and embedded systems.
 C++ is an object-oriented programming language which gives a clear

structure to programs and allows code to be reused, lowering development
costs.

 C++ is portable and can be used to develop applications that can be
adapted to multiple platforms.

 C++ is fun and easy to learn!
 As C++ is close to C# and Java, it makes it easy for programmers to switch to

C++ or vice versa

C++ Getting Started

C++ Get Started
To start using C++, you need two things:

 A text editor, like Notepad, to write C++ code

 A compiler, like GCC, to translate the C++ code into a language that the
computer will understand

There are many text editors and compilers to choose from. In this tutorial, we
will use an IDE (see below).

C++ Install IDE
 An IDE (Integrated Development Environment) is used to edit AND compile

the code.
 Popular IDE's include Code::Blocks, Eclipse, and Visual Studio. These are all

free, and they can be used to both edit and debug C++ code.
 Note:Web-based IDE's can work as well, but functionality is limited.
 We will use Code::Blocks in our tutorial, which we believe is a good place to

start.
 You can find the latest version of Codeblocks

at http://www.codeblocks.org/downloads/26. Download the mingw-
setup.exe file, which will install the text editor with a compiler.

C++ Quickstart
 Let's create our first C++ file.
 Open Codeblocks and go to File > New > Empty File.
 Write the following C++ code and save the file as myfirstprogram.cpp (File >

Save File as):

myfirstprogram.cpp
#include <iostream>
using namespace std;

int main() {
cout << "Hello World!";
return 0;
}

 Don't worry if you don't understand the code above - we will discuss it in
detail in later chapters. For now, focus on how to run the code.

 In Codeblocks, it should look like this:

http://www.codeblocks.org/downloads/26

Hello World!
Process returned 0 (0x0) execution time : 0.011 s
Press any key to continue.

Then, go to Build > Build and Run to run (execute) the program. The result will
look something to this:

Congratulations! You have now written and executed your first C++ program.

Learning C++
When learning C++ at ditrp.com, you can use our "Try it Yourself" tool, which
shows both the code and the result. This will make it easier for you to
understand every part as we move forward:

myfirstprogram.cpp
Code:
#include <iostream>
using namespace std;

int main() {
cout << "Hello World!";
return 0;
}
Result:
Hello World!

C++ SYNTAX

C++ Syntax
Let's break up the following code to understand it better:

Example
#include <iostream>
using namespace std;

int main() {
cout << "Hello World!";
return 0;
}

Example explained
Line 1: #include <iostream> is a header file library that lets us work with input
and output objects, such as cout (used in line 5). Header files add functionality
to C++ programs.

Line 2: using namespace std means that we can use names for objects and
variables from the standard library.

Don't worry if you don't understand how #include <iostream> and using
namespace std works. Just think of it as something that (almost) always
appears in your program.

Line 3: A blank line. C++ ignores white space.

Line 4: Another thing that always appear in a C++ program, is int main(). This is
called a function. Any code inside its curly brackets {} will be executed.

Line 5: cout (pronounced "see-out") is an object used together with
the insertion operator (<<) to output/print text. In our example it will output
"Hello World".

Note: Every C++ statement ends with a semicolon ;.

Note: The body of int main() could also been written as:
int main () { cout << "Hello World! "; return 0; }

Remember: The compiler ignores white spaces. However, multiple lines makes
the code more readable.

Line 6: return 0 ends the main function.

Line 7: Do not forget to add the closing curly bracket } to actually end the main
function.
Omitting Namespace
You might see some C++ programs that runs without the standard namespace
library. The using namespace std line can be omitted and replaced with
the std keyword, followed by the :: operator for some objects:

Example
#include <iostream>

int main() {
std::cout << "Hello World!";
return 0;
}

C++ OUTPUT (PRINT TEXT)

C++ Output (Print Text)
The cout object, together with the << operator, is used to output values/print
text:

Example
#include <iostream>
using namespace std;

int main() {
cout << "Hello World!";
return 0;
}

You can add as many cout objects as you want. However, note that it does not
insert a new line at the end of the output:

Example
#include <iostream>
using namespace std;

int main() {
cout << "Hello World!";

cout << "I am learning C++";
return 0;
}

C++ New Lines

New Lines
To insert a new line, you can use the \n character:

Example
#include <iostream>
using namespace std;

int main() {
cout << "Hello World! \n";
cout << "I am learning C++";
return 0;
}

Tip: Two \n characters after each other will create a blank line:

Example
#include <iostream>
using namespace std;

int main() {
cout << "Hello World! \n\n";
cout << "I am learning C++";
return 0;
}

Another way to insert a new line, is with the endl manipulator:

Example
#include <iostream>
using namespace std;

int main() {
cout << "Hello World!" << endl;

cout << "I am learning C++";
return 0;
}

C++ COMMENTS

C++ Comments
Comments can be used to explain C++ code, and to make it more readable. It
can also be used to prevent execution when testing alternative code.
Comments can be singled-lined or multi-lined.

Single-line Comments
 Single-line comments start with two forward slashes (//).
 Any text between // and the end of the line is ignored by the compiler (will

not be executed).
 This example uses a single-line comment before a line of code:

Example
// This is a comment
cout << "Hello World!";

This example uses a single-line comment at the end of a line of code:

Example
cout << "Hello World!"; // This is a comment

C++ Multi-line Comments
 Multi-line comments start with /* and ends with */.
 Any text between /* and */ will be ignored by the compiler:

Example
/* The code below will print the words Hello World!
to the screen, and it is amazing */
cout << "Hello World!";

C++ VARIABLES

C++ Variables
Variables are containers for storing data values.

In C++, there are different types of variables (defined with different keywords),
for example:

 int - stores integers (whole numbers), without decimals, such as 123 or -
123

 double - stores floating point numbers, with decimals, such as 19.99 or -
19.99

 char - stores single characters, such as 'a' or 'B'. Char values are
surrounded by single quotes

 string - stores text, such as "Hello World". String values are surrounded
by double quotes

 bool - stores values with two states: true or false

Declaring (Creating) Variables
To create a variable, you must specify the type and assign it a value:

Syntax
type variable = value;

Where type is one of C++ types (such as int), and variable is the name of the
variable (such as x ormyName). The equal sign is used to assign values to the
variable.

To create a variable that should store a number, look at the following example:

Example
Create a variable calledmyNum of type int and assign it the value 15:
int myNum = 15;
cout << myNum;

You can also declare a variable without assigning the value, and assign the
value later:

Example
int myNum;
myNum = 15;
cout << myNum;

Note that if you assign a new value to an existing variable, it will overwrite the
previous value:

Example
int myNum = 15; // myNum is 15
myNum = 10; // Now myNum is 10
cout << myNum; // Outputs 10

Other Types
A demonstration of other data types:

Example
int myNum = 5; // Integer (whole number without decimals)
double myFloatNum = 5.99; // Floating point number (with decimals)
char myLetter = 'D'; // Character
string myText = "Hello"; // String (text)
bool myBoolean = true; // Boolean (true or false)
You will learn more about the individual types in the Data Types chapter.

Display Variables
The cout object is used together with the << operator to display variables.
To combine both text and a variable, separate them with the << operator:

Example
int myAge = 35;
cout << "I am " << myAge << " years old.";

Add Variables Together
To add a variable to another variable, you can use the + operator:

Example
int x = 5;
int y = 6;
int sum = x + y;
cout << sum;

C++ Declare Multiple Variables

Declare Many Variables

To declare more than one variable of the same type, use a comma-separated
list:

Example
int x = 5, y = 6, z = 50;
cout << x + y + z;

C++ Identifiers

C++ Identifiers
 All C++ variablesmust be identified with unique names.
 These unique names are called identifiers.
 Identifiers can be short names (like x and y) or more descriptive names

(age, sum, totalVolume).
 Note: It is recommended to use descriptive names in order to create

understandable and maintainable code:

Example
// Good
int minutesPerHour = 60;

// OK, but not so easy to understand whatm actually is
int m = 60;

C++ Constants

Constants
When you do not want others (or yourself) to override existing variable values,
use the const keyword (this will declare the variable as "constant", which
means unchangeable and read-only):

Example
const int myNum = 15; // myNum will always be 15
myNum = 10; // error: assignment of read-only variable 'myNum'
You should always declare the variable as constant when you have values that
are unlikely to change:

Example
const int minutesPerHour = 60;
const float PI = 3.14;

C++ USER INPUT

C++ User Input
 You have already learned that cout is used to output (print) values. Now we

will use cin to get user input.
 cin is a predefined variable that reads data from the keyboard with the

extraction operator (>>).
 In the following example, the user can input a number, which is stored in

the variable x. Then we print the value of x:

Example
int x;
cout << "Type a number: "; // Type a number and press enter
cin >> x; // Get user input from the keyboard
cout << "Your number is: " << x; // Display the input value

Good To Know
cout is pronounced "see-out". Used for output, and uses the insertion operator
(<<)
cin is pronounced "see-in". Used for input, and uses the extraction operator
(>>)

Creating a Simple Calculator
In this example, the user must input two numbers. Then we print the sum by
calculating (adding) the two numbers:

Example
int x, y;
int sum;
cout << "Type a number: ";
cin >> x;
cout << "Type another number: ";
cin >> y;
sum = x + y;
cout << "Sum is: " << sum;

C++ DATA TYPES

C++ Data Types
As explained in the Variables chapter, a variable in C++ must be a specified
data type:

Example
int myNum = 5; // Integer (whole number)
float myFloatNum = 5.99; // Floating point number
double myDoubleNum = 9.98; // Floating point number
char myLetter = 'D'; // Character
bool myBoolean = true; // Boolean
string myText = "Hello"; // String

Basic Data Types
The data type specifies the size and type of information the variable will store:

Data
Type

Size Description

int 4
bytes

Stores whole numbers, without decimals

float 4
bytes

Stores fractional numbers, containing one or more
decimals. Sufficient for storing 7 decimal digits

double 8
bytes

Stores fractional numbers, containing one or more
decimals. Sufficient for storing 15 decimal digits

boolean 1 byte Stores true or false values
char 1 byte Stores a single character/letter/number, or ASCII values

C++ Numeric Data Types

Numeric Types
Use int when you need to store a whole number without decimals, like 35 or
1000, and float or double when you need a floating point number (with
decimals), like 9.99 or 3.14515.
int
int myNum = 1000;
cout << myNum;

float
float myNum = 5.75;
cout << myNum;

double
double myNum = 19.99;
cout << myNum;

float vs. double
The precision of a floating point value indicates how many digits the value can
have after the decimal point. The precision of float is only six or seven decimal
digits, while double variables have a precision of about 15 digits. Therefore it is
safer to use double for most calculations.

Scientific Numbers
A floating point number can also be a scientific number with an "e" to indicate
the power of 10:

Example
float f1 = 35e3;
double d1 = 12E4;
cout << f1;
cout << d1;

C++ Boolean Data Types

Boolean Types
A boolean data type is declared with the bool keyword and can only take the
values true or false. When the value is returned, true = 1 and false = 0.

Example
bool isCodingFun = true;
bool isFishTasty = false;
cout << isCodingFun; // Outputs 1 (true)
cout << isFishTasty; // Outputs 0 (false)
Boolean values are mostly used for conditional testing, which you will learn
more about in a later chapter.

C++ Character Data Types

Character Types
The char data type is used to store a single character. The character must be
surrounded by single quotes, like 'A' or 'c':

Example
char myGrade = 'B';
cout << myGrade;

Alternatively, you can use ASCII values to display certain characters:

Example
char a = 65, b = 66, c = 67;
cout << a;
cout << b;
cout << c;

C++ String Data Types

String Types
The string type is used to store a sequence of characters (text). This is not a
built-in type, but it behaves like one in its most basic usage. String values must
be surrounded by double quotes:

Example
string greeting = "Hello";
cout << greeting;
To use strings, you must include an additional header file in the source code,
the <string> library:

Example
// Include the string library
#include <string>

// Create a string variable
string greeting = "Hello";

// Output string value
cout << greeting;

C++OPERATORS

C++ Operators
Operators are used to perform operations on variables and values.
In the example below, we use the + operator to add together two values:

Example
int x = 100 + 50;

Although the + operator is often used to add together two values, like in the
example above, it can also be used to add together a variable and a value, or a
variable and another variable:

Example
int sum1 = 100 + 50; // 150 (100 + 50)
int sum2 = sum1 + 250; // 400 (150 + 250)
int sum3 = sum2 + sum2; // 800 (400 + 400)

C++ divides the operators into the following groups:
 Arithmetic operators
 Assignment operators
 Comparison operators
 Logical operators
 Bitwise operators

Arithmetic Operators
Arithmetic operators are used to perform common mathematical operations.

Operator Name Description Example
+ Addition Adds together two values x + y
- Subtraction Subtracts one value from another x - y
* Multiplication Multiplies two values x * y
/ Division Divides one value by another x / y
% Modulus Returns the division remainder x % y
++ Increment Increases the value of a variable

by 1
++x

-- Decrement Decreases the value of a variable
by 1

--x

C++ Assignment Operators

Assignment Operators
Assignment operators are used to assign values to variables.
In the example below, we use the assignment operator (=) to assign the
value 10 to a variable called x:

Example
int x = 10;

The addition assignment operator (+=) adds a value to a variable:

Example
int x = 10;
x += 5;

A list of all assignment operators:

Operator Example Same As
= x = 5 x = 5
+= x += 3 x = x + 3
-= x -= 3 x = x - 3
*= x *= 3 x = x * 3
/= x /= 3 x = x / 3
%= x %= 3 x = x % 3
&= x &= 3 x = x & 3
|= x |= 3 x = x | 3
^= x ^= 3 x = x ^ 3
>>= x >>= 3 x = x >> 3
<<= x <<= 3 x = x << 3

C++ Comparison Operators

Comparison Operators
 Comparison operators are used to compare two values.
 Note: The return value of a comparison is either true (1) or false (0).
 In the following example, we use the greater than operator (>) to find out if

5 is greater than 3:
Example
int x = 5;
int y = 3;
cout << (x > y); // returns 1 (true) because 5 is greater than 3

A list of all comparison operators:
Operator Name Example
== Equal to x == y
!= Not equal x != y
> Greater than x > y
< Less than x < y
>= Greater than or equal to x >= y
<= Less than or equal to x <= y

C++ Logical Operators

Logical Operators
Logical operators are used to determine the logic between variables
or values:
Operator Name Description Example
&& Logical

and
Returns true if both
statements are true

x < 5 && x <
10

|| Logical
or

Returns true if one of the
statements is true

x < 5 || x < 4

! Logical
not

Reverse the result, returns
false if the result is true

!(x < 5 && x
< 10)

C++ Strings
C++ STRINGS

Strings are used for storing text.
A string variable contains a collection of characters surrounded by double
quotes:

Example
Create a variable of type string and assign it a value:
string greeting = "Hello";

To use strings, you must include an additional header file in the source code,
the <string> library:

Example
// Include the string library
#include <string>

// Create a string variable
string greeting = "Hello";

C++ String Concatenation

String Concatenation
The + operator can be used between strings to add them together to make a
new string. This is called concatenation:

Example
string firstName = "John ";
string lastName = "Doe";
string fullName = firstName + lastName;
cout << fullName;

In the example above, we added a space after firstName to create a space
between John and Doe on output. However, you could also add a space with
quotes (" " or ' '):

Example
string firstName = "John";
string lastName = "Doe";
string fullName = firstName + " " + lastName;
cout << fullName;

Append
A string in C++ is actually an object, which contain functions that can perform
certain operations on strings. For example, you can also concatenate strings
with the append() function:

Example
string firstName = "John ";
string lastName = "Doe";
string fullName = firstName.append(lastName);
cout << fullName;

C++ Numbers and Strings

Adding Numbers and Strings

WARNING!
 C++ uses the + operator for both addition and concatenation.
 Numbers are added. Strings are concatenated.

If you add two numbers, the result will be a number:

Example
int x = 10;
int y = 20;
int z = x + y; // z will be 30 (an integer)

If you add two strings, the result will be a string concatenation:

Example
string x = "10";
string y = "20";
string z = x + y; // z will be 1020 (a string)

If you try to add a number to a string, an error occurs:

Example
string x = "10";
int y = 20;
string z = x + y;

C++ String Length

String Length
To get the length of a string, use the length() function:

Example
string txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
cout << "The length of the txt string is: " << txt.length();

Tip: You might see some C++ programs that use the size() function to get the
length of a string. This is just an alias of length(). It is completely up to you if
you want to use length() or size():

Example
string txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
cout << "The length of the txt string is: " << txt.size();

C++ Access Strings

Access Strings
You can access the characters in a string by referring to its index
number inside square brackets [].
This example prints the first character inmyString:

Example
string myString = "Hello";
cout << myString[0];
// Outputs H

Note: String indexes start with 0: [0] is the first character. [1] is the
second character, etc.
This example prints the second character inmyString:

Example
string myString = "Hello";
cout << myString[1];
// Outputs e

Change String Characters
To change the value of a specific character in a string, refer to the
index number, and use single quotes:

Example
string myString = "Hello";
myString[0] = 'J';
cout << myString;
// Outputs Jello instead of Hello

C++ USER INPUT STRINGS

User Input Strings
It is possible to use the extraction operator >> on cin to display a string entered
by a user:

Example
string firstName;
cout << "Type your first name: ";
cin >> firstName; // get user input from the keyboard
cout << "Your name is: " << firstName;

// Type your first name: John
// Your name is: John

However, cin considers a space (whitespace, tabs, etc) as a terminating
character, which means that it can only display a single word (even if you type
many words):

Example
string fullName;
cout << "Type your full name: ";
cin >> fullName;
cout << "Your name is: " << fullName;

// Type your full name: John Doe
// Your name is: John

From the example above, you would expect the program to print "John Doe",
but it only prints "John".

That's why, when working with strings, we often use the getline() function to
read a line of text. It takes cin as the first parameter, and the string variable as
second:

Example
string fullName;
cout << "Type your full name: ";
getline (cin, fullName);
cout << "Your name is: " << fullName;

// Type your full name: John Doe
// Your name is: John Doe

C++ String Namespace

Omitting Namespace
You might see some C++ programs that runs without the standard namespace
library. The using namespace std line can be omitted and replaced with
the std keyword, followed by the :: operator for string (and cout) objects:

Example
#include <iostream>
#include <string>

int main() {
std::string greeting = "Hello";
std::cout << greeting;
return 0;
}

C++ Math
C++MATH

C++ has many functions that allows you to perform mathematical tasks on
numbers.

Max and min
The max(x,y) function can be used to find the highest value of x and y:

Example
cout << max(5, 10);

And the min(x,y) function can be used to find the lowest value of x and y:

Example
cout << min(5, 10);

C++ <cmath> Header
Other functions, such as sqrt (square root), round (rounds a number)
and log (natural logarithm), can be found in the <cmath> header file:

Example
// Include the cmath library
#include <cmath>

cout << sqrt(64);
cout << round(2.6);

cout << log(2);

Other Math Functions
A list of other popular Math functions (from the <cmath> library) can be found
in the table below:

Function Description
abs(x) Returns the absolute value of x
acos(x) Returns the arccosine of x
asin(x) Returns the arcsine of x
atan(x) Returns the arctangent of x
cbrt(x) Returns the cube root of x
ceil(x) Returns the value of x rounded up to its nearest integer
cos(x) Returns the cosine of x
cosh(x) Returns the hyperbolic cosine of x
exp(x) Returns the value of Ex

expm1(x) Returns ex -1
fabs(x) Returns the absolute value of a floating x
fdim(x, y) Returns the positive difference between x and y
floor(x) Returns the value of x rounded down to its nearest integer
hypot(x, y) Returns sqrt(x2 +y2) without intermediate overflow or

underflow
fma(x, y, z) Returns x*y+z without losing precision
fmax(x, y) Returns the highest value of a floating x and y
fmin(x, y) Returns the lowest value of a floating x and y
fmod(x, y) Returns the floating point remainder of x/y
pow(x, y) Returns the value of x to the power of y
sin(x) Returns the sine of x (x is in radians)
sinh(x) Returns the hyperbolic sine of a double value
tan(x) Returns the tangent of an angle
tanh(x) Returns the hyperbolic tangent of a double value

C++ BOOLEANS

C++ Booleans
Very often, in programming, you will need a data type that can only have one
of two values, like:

 YES / NO
 ON / OFF
 TRUE / FALSE

For this, C++ has a bool data type, which can take the values true (1)
or false (0).

Boolean Values
A boolean variable is declared with the bool keyword and can only take the
values true or false:

Example
bool isCodingFun = true;
bool isFishTasty = false;
cout << isCodingFun; // Outputs 1 (true)
cout << isFishTasty; // Outputs 0 (false)

From the example above, you can read that a true value returns 1,
and false returns 0.

However, it is more common to return boolean values from boolean
expressions (see next page).

C++ BOOLEAN EXPRESSIONS

Boolean Expression
 A Boolean expression is a C++ expression that returns a boolean

value: 1 (true) or 0 (false).
 You can use a comparison operator, such as the greater than (>)

operator to find out if an expression (or a variable) is true:

Example
int x = 10;
int y = 9;
cout << (x > y); // returns 1 (true), because 10 is higher than 9
Or even easier:

Example
cout << (10 > 9); // returns 1 (true), because 10 is higher than 9

In the examples below, we use the equal to (==) operator to evaluate
an expression:

Example
int x = 10;
cout << (x == 10); // returns 1 (true), because the value of x is equal
to 10

Example
cout << (10 == 15); // returns 0 (false), because 10 is not equal to 15

Booleans are the basis for all C++ comparisons and conditions.
You will learn more about conditions (if...else) in the next chapter.

C++ IF ... ELSE

C++ Conditions and If Statements
C++ supports the usual logical conditions frommathematics:

 Less than: a < b
 Less than or equal to: a <= b
 Greater than: a > b
 Greater than or equal to: a >= b
 Equal to a == b
 Not Equal to: a != b

You can use these conditions to perform different actions for different
decisions.
C++ has the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is
true

 Use else to specify a block of code to be executed, if the same condition
is false

 Use else if to specify a new condition to test, if the first condition is false
 Use switch to specify many alternative blocks of code to be executed

The if Statement
Use the if statement to specify a block of C++ code to be executed if a
condition is true.

Syntax
if (condition) {
// block of code to be executed if the condition is true
}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an
error.

In the example below, we test two values to find out if 20 is greater than 18. If
the condition is true, print some text:

Example
if (20 > 18) {
cout << "20 is greater than 18";
}

We can also test variables:

Example
int x = 20;
int y = 18;
if (x > y) {
cout << "x is greater than y";
}

Example explained
In the example above we use two variables, x and y, to test whether x is
greater than y (using the > operator). As x is 20, and y is 18, and we know that
20 is greater than 18, we print to the screen that "x is greater than y".

C++ ELSE

The else statement
Use the else statement to specify a block of code to be executed if the
condition is false.

Syntax
If (condition) {
// block of code to be executed if the condition is true
} else {
// block of code to be executed if the condition is false

}

Example
Int time = 20;
if (time < 18) {
cout << "good day.";
} else {
cout << "good evening.";
}
// outputs "good evening."

Example explained
In the example above, time (20) is greater than 18, so the condition is false.
Because of this, we move on to the else condition and print to the screen
"good evening". If the time was less than 18, the program would print "good
day".

C++ Else If

The else if Statement
Use the else if statement to specify a new condition if the first condition
is false.

Syntax
if (condition1) {
// block of code to be executed if condition1 is true
} else if (condition2) {
// block of code to be executed if the condition1 is false and condition2 is true
} else {
// block of code to be executed if the condition1 is false and condition2 is false
}

Example
int time = 22;
if (time < 10) {
cout << "Good morning.";
} else if (time < 20)
{ cout << "Good day.";
} else {

cout << "Good evening.";
}
// Outputs "Good evening."

Example explained
In the example above, time (22) is greater than 10, so the first
condition is false. The next condition, in the else if statement, is also false, so
we move on to the else condition since condition1 and condition2 is
both false - and print to the screen "Good evening".

However, if the time was 14, our program would print "Good day."

C++ SWITCH

C++ Switch Statements
Use the switch statement to select one of many code blocks to be executed.

Syntax
switch(expression)
{case x:
// code block
break;
case y:
// code block
break; default:
// code block

}
This is how it works:

 The switch expression is evaluated once
 The value of the expression is compared with the values of each case
 If there is a match, the associated block of code is executed
 The break and default keywords are optional, and will be described later

in this chapter

The example below uses the weekday number to calculate the weekday name:

Example
int day = 4;
switch (day)
{case 1:

cout << "Monday";
break;
case 2:
cout << "Tuesday";
break;
case 3:
cout << "Wednesday";
break;
case 4:
cout << "Thursday";
break;
case 5:
cout << "Friday";
break;
case 6:
cout << "Saturday";
break;
case 7:
cout << "Sunday";
break;

}
// Outputs "Thursday" (day 4)

The break Keyword
 When C++ reaches a break keyword, it breaks out of the switch block.
 This will stop the execution of more code and case testing inside the block.
 When a match is found, and the job is done, it's time for a break. There is

no need for more testing.
 A break can save a lot of execution time because it "ignores" the execution

of all the rest of the code in the switch block.

The default Keyword
The default keyword specifies some code to run if there is no case match:

Example
int day = 4;
switch (day)
{case 6:

cout << "Today is Saturday";
break;
case 7:
cout << "Today is Sunday";
break;
default:
cout << "Looking forward to the Weekend";

}
// Outputs "Looking forward to the Weekend"

Note: The default keyword must be used as the last statement in the switch,
and it does not need a break.

C++ WHILE LOOP

C++ Loops
 Loops can execute a block of code as long as a specified condition is

reached.
 Loops are handy because they save time, reduce errors, and they make

code more readable.

C++ While Loop
The while loop loops through a block of code as long as a specified condition
is true:

Syntax
while (condition) {
// code block to be executed
}

In the example below, the code in the loop will run, over and over again, as
long as a variable (i) is less than 5:

Example
int i = 0;
while (i < 5) {
cout << i << "\n";
i++;
}

Note: Do not forget to increase the variable used in the condition, otherwise
the loop will never end!
C++ Do/While Loop

The Do/While Loop
The do/while loop is a variant of the while loop. This loop will execute the code
block once, before checking if the condition is true, then it will repeat the loop
as long as the condition is true.

Syntax
do {
// code block to be executed
}
while (condition);

The example below uses a do/while loop. The loop will always be executed at
least once, even if the condition is false, because the code block is executed
before the condition is tested:

Example
int i = 0;
do {
cout << i << "\n";
i++;
}
while (i < 5);

Do not forget to increase the variable used in the condition, otherwise the loop
will never end!

C++ For Loop
C++ FOR LOOP

When you know exactly how many times you want to loop through a block of
code, use the for loop instead of a while loop:

Syntax
for (statement 1; statement 2; statement 3) {
// code block to be executed
}

Statement 1 is executed (one time) before the execution of the code block.
Statement 2 defines the condition for executing the code block.
Statement 3 is executed (every time) after the code block has been executed.
The example below will print the numbers 0 to 4:

Example
for (int i = 0; i < 5; i++)
{cout << i << "\n";
}

Example explained
Statement 1 sets a variable before the loop starts (int i = 0).
Statement 2 defines the condition for the loop to run (i must be less than 5). If
the condition is true, the loop will start over again, if it is false, the loop will
end.
Statement 3 increases a value (i++) each time the code block in the loop has
been executed.

Another Example
This example will only print even values between 0 and 10:

Example
for (int i = 0; i <= 10; i = i + 2)
{cout << i << "\n";
}

C++ BREAK AND CONTINUE

C++ Break
 You have already seen the break statement used in an earlier chapter of

this tutorial. It was used to "jump out" of a switch statement.
 The break statement can also be used to jump out of a loop.
 This example jumps out of the loop when i is equal to 4:

Example
for (int i = 0; i < 10; i++)
{if (i == 4) {
break;
}
cout << i << "\n";

}

C++ Continue
 The continue statement breaks one iteration (in the loop), if a specified

condition occurs, and continues with the next iteration in the loop.
 This example skips the value of 4:

Example
for (int i = 0; i < 10; i++)
{if (i == 4) {
continue;
}
cout << i << "\n";
}

Break and Continue in While Loop
You can also use break and continue in while loops:

Break Example
int i = 0;
while (i < 10)
{ cout << i <<
"\n";i++;
if (i == 4)
{break;
}
}

Continue Example
int i = 0;
while (i < 10)
{if (i == 4)
{ i++;
continue;
}
cout << i << "\n";
i++;
}

C++ ARRAYS

C++ Arrays
 Arrays are used to store multiple values in a single variable, instead of

declaring separate variables for each value.
 To declare an array, define the variable type, specify the name of the array

followed by square brackets and specify the number of elements it should
store:

string cars[4];

We have now declared a variable that holds an array of four strings. To insert
values to it, we can use an array literal - place the values in a comma-separated
list, inside curly braces:

string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};

To create an array of three integers, you could write:

int myNum[3] = {10, 20, 30};

Access the Elements of an Array
 You access an array element by referring to the index number.
 This statement accesses the value of the first element in cars:

Example
string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};
cout << cars[0];
// Outputs Volvo

Note: Array indexes start with 0: [0] is the first element. [1] is the second
element, etc.

Change an Array Element
To change the value of a specific element, refer to the index number:

Example
cars[0] = "Opel";

Example
string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};
cars[0] = "Opel";
cout << cars[0];
// Now outputs Opel instead of Volvo

C++ Arrays and Loops

Loop Through an Array
 You can loop through the array elements with the for loop.
 The following example outputs all elements in the cars array:

Example
string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};
for(int i = 0; i < 4; i++) {
cout << cars[i] << "\n";
}

The following example outputs the index of each element together with its
value:

Example
string cars[4] = {"Volvo", "BMW", "Ford", "Mazda"};
for(int i = 0; i < 4; i++) {
cout << i << ": " << cars[i] << "\n";
}

C++ Omit Array Size

Omit Array Size
You don't have to specify the size of the array. But if you don't, it will only be as
big as the elements that are inserted into it:

string cars[] = {"Volvo", "BMW", "Ford"}; // size of array is always 3

This is completely fine. However, the problem arise if you want extra space for
future elements. Then you have to overwrite the existing values:

string cars[] = {"Volvo", "BMW", "Ford"};
string cars[] = {"Volvo", "BMW", "Ford", "Mazda", "Tesla"};

If you specify the size however, the array will reserve the extra space:
string cars[5] = {"Volvo", "BMW", "Ford"}; // size of array is 5, even though it's
only three elements inside it

Now you can add a fourth and fifth element without overwriting the others:
cars[3] = "Mazda";
cars[4] = "Tesla";

Omit Elements on Declaration
It is also possible to declare an array without specifying the elements on
declaration, and add them later:

string cars[5];
cars[0] = "Volvo";
cars[1] = "BMW";
...

C++ REFERENCES

Creating References
A reference variable is a "reference" to an existing variable, and it is created
with the & operator:

string food = "Pizza"; // food variable
string &meal = food; // reference to food

Now, we can use either the variable name food or the reference name meal to
refer to the food variable:

Example
string food = "Pizza";
string &meal = food;

cout << food << "\n"; // Outputs Pizza
cout << meal << "\n"; // Outputs Pizza

C++ Memory Address

Memory Address
 In the example from the previous page, the & operator was used to create a

reference variable. But it can also be used to get the memory address of a
variable; which is the location of where the variable is stored on the
computer.

 When a variable is created in C++, a memory address is assigned to the
variable. And when we assign a value to the variable, it is stored in this
memory address.

 To access it, use the & operator, and the result will represent where the
variable is stored:

Example
string food = "Pizza";

cout << &food; // Outputs 0x6dfed4

Note: The memory address is in hexadecimal form (0x..). Note that you may
not get the same result in your program.

And why is it useful to know the memory address?
References and Pointers (which you will learn about in the next chapter) are
important in C++, because they give you the ability to manipulate the data in
the computer's memory - which can reduce the code and improve the
performance.
These two features are one of the things that make C++ stand out from other
programming languages, like Python and Java.

C++ POINTERS

Creating Pointers
You learned from the previous chapter, that we can get thememory
address of a variable by using the & operator:

Example
string food = "Pizza"; // A food variable of type string

cout << food; // Outputs the value of food (Pizza)
cout << &food; // Outputs the memory address of food (0x6dfed4)

 A pointer however, is a variable that stores the memory address
as its value.

 A pointer variable points to a data type (like int or string) of the
same type, and is created with the * operator. The address of the
variable you're working with is assigned to the pointer:

Example
string food = "Pizza"; // A food variable of type string
string* ptr = &food; // A pointer variable, with the name ptr, that
stores the address of food

// Output the value of food (Pizza)
cout << food << "\n";

// Output the memory address of food (0x6dfed4)
cout << &food << "\n";

// Output the memory address of food with the pointer (0x6dfed4)
cout << ptr << "\n";

Example explained
 Create a pointer variable with the name ptr, that points

to a string variable, by using the asterisk sign * (string* ptr). Note
that the type of the pointer has to match the type of the variable
you're working with.

 Use the & operator to store the memory address of the variable
called food, and assign it to the pointer.

 Now, ptr holds the value of food's memory address.

Tip: There are three ways to declare pointer variables, but the first
way is preferred:

string* mystring; // Preferred
string *mystring;
string * mystring;
C++ Dereference

Get Memory Address and Value
In the example from the previous page, we used the pointer variable to get the
memory address of a variable (used together with the & reference operator).
However, you can also use the pointer to get the value of the variable, by using
the * operator (the dereference operator):

Example
string food = "Pizza"; // Variable declaration
string* ptr = &food; // Pointer declaration

// Reference: Output the memory address of food with the pointer (0x6dfed4)
cout << ptr << "\n";

// Dereference: Output the value of food with the pointer (Pizza)
cout << *ptr << "\n";

C++Modify Pointers

Modify the Pointer Value
You can also change the pointer's value. But note that this will also change the
value of the original variable:

Example
string food = "Pizza";
string* ptr = &food;

// Output the value of food (Pizza)
cout << food << "\n";

// Output the memory address of food (0x6dfed4)
cout << &food << "\n";

// Access the memory address of food and output its value (Pizza)

cout << *ptr << "\n";

// Change the value of the pointer
*ptr = "Hamburger";

// Output the new value of the pointer (Hamburger)
cout << *ptr << "\n";

// Output the new value of the food variable (Hamburger)
cout << food << "\n";

C++ FUNCTIONS

 A function is a block of code which only runs when it is called.
 You can pass data, known as parameters, into a function.
 Functions are used to perform certain actions, and they are important for

reusing code: Define the code once, and use it many times.

Create a Function
 C++ provides some pre-defined functions, such as main(), which is used to

execute code. But you can also create your own functions to perform
certain actions.

 To create (often referred to as declare) a function, specify the name of the
function, followed by parentheses ():

Syntax
voidmyFunction() {
// code to be executed
}

Example Explained
 myFunction() is the name of the function
 void means that the function does not have a return value. You will learn

more about return values later in the next chapter
 inside the function (the body), add code that defines what the function

should do

Call a Function

 Declared functions are not executed immediately. They are "saved for later
use", and will be executed later, when they are called.

 To call a function, write the function's name followed by two
parentheses () and a semicolon ;

 In the following example, myFunction() is used to print a text (the action),
when it is called:

Example
Inside main, call myFunction():
// Create a function
void myFunction() {
cout << "I just got executed!";
}

int main() {
myFunction(); // call the function
return 0;
}

// Outputs "I just got executed!"

A function can be called multiple times:

Example
void myFunction() {
cout << "I just got executed!\n";
}

int main()
{myFunction()
;myFunction();
myFunction();
return 0;
}

// I just got executed!
// I just got executed!
// I just got executed!

Function Declaration and Definition
A C++ function consist of two parts:

 Declaration: the function's name, return type, and parameters (if any)
 Definition: the body of the function (code to be executed)

voidmyFunction() { // declaration
// the body of the function (definition)
}

Note: If a user-defined function, such as myFunction() is declared after
the main() function, an error will occur:

Example
int main()
{ myFunction()
;return 0;
}

void myFunction() {
cout << "I just got executed!";
}

// Error

 However, it is possible to separate the declaration and the definition of the
function - for code optimization.

 You will often see C++ programs that have function declaration
above main(), and function definition below main(). This will make the code
better organized and easier to read:

Example
// Function declaration
void myFunction();

// The main method
int main() {
myFunction(); // call the function
return 0;
}

// Function definition
void myFunction() {
cout << "I just got executed!";
}

C++ FUNCTION PARAMETERS

Parameters and Arguments
 Information can be passed to functions as a parameter. Parameters act as

variables inside the function.
 Parameters are specified after the function name, inside the parentheses.

You can add as many parameters as you want, just separate them with a
comma:

Syntax
void functionName(parameter1, parameter2, parameter3) {
// code to be executed
}

The following example has a function that takes a string called fname as
parameter. When the function is called, we pass along a first name, which is
used inside the function to print the full name:

Example
void myFunction(string fname)
{cout << fname << " Refsnes\n";
}

int main()
{ myFunction("Liam");
myFunction("Jenny");
myFunction("Anja");
return 0;
}

// Liam Refsnes
// Jenny Refsnes
// Anja Refsnes

When a parameter is passed to the function, it is called an argument. So, from
the example above: fname is a parameter,
while Liam, Jenny and Anja are arguments.

C++ Default Parameters

Default Parameter Value
 You can also use a default parameter value, by using the equals sign (=).
 If we call the function without an argument, it uses the default value

("Norway"):
Example
void myFunction(string country = "Norway")
{cout << country << "\n";
}

int main()
{ myFunction("Sweden")
;myFunction("India");
myFunction();
myFunction("USA");
return 0;
}

// Sweden
// India
// Norway
// USA

A parameter with a default value, is often known as an "optional parameter".
From the example above, country is an optional parameter and "Norway" is
the default value.

C++Multiple Parameters

Multiple Parameters
Inside the function, you can add as many parameters as you want:

Example
void myFunction(string fname, int age) {
cout << fname << " Refsnes. " << age << " years old. \n";
}

int main()
{ myFunction("Liam",
3);
myFunction("Jenny", 14);
myFunction("Anja", 30);
return 0;
}

// Liam Refsnes. 3 years old.
// Jenny Refsnes. 14 years old.
// Anja Refsnes. 30 years old.

Note that when you are working with multiple parameters, the function call
must have the same number of arguments as there are parameters, and the
arguments must be passed in the same order.

C++ The Return Keyword

Return Values
The void keyword, used in the previous examples, indicates that the function
should not return a value. If you want the function to return a value, you can
use a data type (such as int, string, etc.) instead of void, and use
the return keyword inside the function:

Example
intmyFunction(int x) {
return 5 + x;
}

int main() {
cout << myFunction(3);
return 0;
}

// Outputs 8 (5 + 3)

This example returns the sum of a function with two parameters:

Example
int myFunction(int x, int y)
{return x + y;
}

int main() {
cout << myFunction(5, 3);
return 0;
}

// Outputs 8 (5 + 3)

You can also store the result in a variable:

Example
int myFunction(int x, int y)
{return x + y;
}

int main() {
int z = myFunction(5, 3);
cout << z;
return 0;
}
// Outputs 8 (5 + 3)

C++ Functions - Pass By Reference

Pass By Reference
In the examples from the previous page, we used normal variables when we
passed parameters to a function. You can also pass a reference to the function.
This can be useful when you need to change the value of the arguments:

Example
void swapNums(int &x, int &y)
{int z = x;
x = y;
y = z;
}

int main() {
int firstNum = 10;
int secondNum = 20;

cout << "Before swap: " << "\n";
cout << firstNum << secondNum << "\n";

// Call the function, which will change the values of firstNum and secondNum
swapNums(firstNum, secondNum);

cout << "After swap: " << "\n";
cout << firstNum << secondNum << "\n";

return 0;
}

C++ FUNCTION OVERLOADING

Function Overloading
With function overloading, multiple functions can have the same name with
different parameters:

Example
int myFunction(int x)
float myFunction(float x)
double myFunction(double x, double y)

Consider the following example, which have two functions that add numbers
of different type:

Example
int plusFuncInt(int x, int y)
{return x + y;
}

double plusFuncDouble(double x, double y)
{return x + y;
}

int main() {
int myNum1 = plusFuncInt(8, 5);
double myNum2 = plusFuncDouble(4.3, 6.26);
cout << "Int: " << myNum1 << "\n";
cout << "Double: " << myNum2;
return 0;
}

Instead of defining two functions that should do the same thing, it is better to
overload one.
In the example below, we overload the plusFunc function to work for
both int and double:

Example
int plusFunc(int x, int y)
{return x + y;
}

double plusFunc(double x, double y)
{return x + y;
}

int main() {
int myNum1 = plusFunc(8, 5);
double myNum2 = plusFunc(4.3, 6.26);
cout << "Int: " << myNum1 << "\n";
cout << "Double: " << myNum2;
return 0;

}

Note:Multiple functions can have the same name as long as the number
and/or type of parameters are different.

C++ OOP

C++ What is OOP?
OOP stands for Object-Oriented Programming.

Procedural programming is about writing procedures or functions that perform
operations on the data, while object-oriented programming is about creating
objects that contain both data and functions.

Object-oriented programming has several advantages over procedural
programming:

 OOP is faster and easier to execute
 OOP provides a clear structure for the programs
 OOP helps to keep the C++ code DRY "Don't Repeat Yourself", and

makes the code easier to maintain, modify and debug
 OOP makes it possible to create full reusable applications with less code

and shorter development time

Tip: The "Don't Repeat Yourself" (DRY) principle is about reducing the
repetition of code. You should extract out the codes that are common for the
application, and place them at a single place and reuse them instead of
repeating it.

C++ What are Classes and Objects?
 Classes and objects are the two main aspects of object-oriented

programming.
 Look at the following illustration to see the difference between class and

objects:

Class
Fruit

Objects
Apple

Banana

Mango

Another example:

Class
Car

Objects
Volvo

Audi

Toyota

 So, a class is a template for objects, and an object is an instance of a class.
 When the individual objects are created, they inherit all the variables and

functions from the class.
 You will learn much more about classes and objects in the next chapter.

C++ CLASSES AND OBJECTS

C++ Classes/Objects
 C++ is an object-oriented programming language.
 Everything in C++ is associated with classes and objects, along with its

attributes and methods. For example: in real life, a car is an object. The car
has attributes, such as weight and color, andmethods, such as drive and
brake.

 Attributes and methods are basically variables and functions that belongs
to the class. These are often referred to as "class members".

 A class is a user-defined data type that we can use in our program, and it
works as an object constructor, or a "blueprint" for creating objects.

Create a Class
To create a class, use the class keyword:

Example
Create a class called "MyClass":
class MyClass { // The class public:

// Access specifier
int myNum; // Attribute (int variable)
string myString; // Attribute (string variable)

};

Example explained
 The class keyword is used to create a class called MyClass.
 The public keyword is an access specifier, which specifies that members

(attributes and methods) of the class are accessible from outside the
class. You will learn more about access specifiers later.

 Inside the class, there is an integer variable myNum and a string
variable myString. When variables are declared within a class, they are
called attributes.

 At last, end the class definition with a semicolon ;.

Create an Object
 In C++, an object is created from a class. We have already created the class

named MyClass, so now we can use this to create objects.
 To create an object of MyClass, specify the class name, followed by the

object name.
 To access the class attributes (myNum and myString), use the dot syntax (.)

on the object:
Example
Create an object called "myObj" and access the attributes:
class MyClass { // The class
public: // Access specifier
int myNum; // Attribute (int variable)
string myString; // Attribute (string variable)

};

int main() {
MyClassmyObj; // Create an object of MyClass

// Access attributes and set values
myObj.myNum = 15;
myObj.myString = "Some text";

// Print attribute values
cout << myObj.myNum << "\n";
cout << myObj.myString;
return 0;

https://www.w3schools.com/cpp/cpp_access_specifiers.asp

}

Multiple Objects
You can create multiple objects of one class:

Example
// Create a Car class with some attributes
class Car {
public:
string brand;
string model;
int year;

};

int main() {
// Create an object of Car
Car carObj1;
carObj1.brand = "BMW";
carObj1.model = "X5";
carObj1.year = 1999;

// Create another object of Car
Car carObj2;
carObj2.brand = "Ford";
carObj2.model = "Mustang";
carObj2.year = 1969;

// Print attribute values
cout << carObj1.brand << " " << carObj1.model << " " << carObj1.year << "\n";
cout << carObj2.brand << " " << carObj2.model << " " << carObj2.year << "\n";
return 0;
}

C++ CLASS METHODS

Class Methods
Methods are functions that belongs to the class.

There are two ways to define functions that belongs to a class:
 Inside class definition
 Outside class definition

In the following example, we define a function inside the class, and we name it
"myMethod".

Note: You access methods just like you access attributes; by creating an object
of the class and using the dot syntax (.):

Inside Example
class MyClass { // The class
public: // Access specifier
void myMethod() { // Method/function defined inside the class
cout << "Hello World!";
}

};

int main() {
MyClass myObj; // Create an object of MyClass
myObj.myMethod(); // Call the method
return 0;
}

To define a function outside the class definition, you have to declare it inside
the class and then define it outside of the class. This is done by specifiying the
name of the class, followed the scope resolution :: operator, followed by the
name of the function:

Outside Example
class MyClass { // The class
public: // Access specifier
void myMethod(); // Method/function declaration

};

// Method/function definition outside the class
voidMyClass::myMethod() {
cout << "Hello World!";
}

int main() {

MyClass myObj; // Create an object of MyClass
myObj.myMethod(); // Call the method
return 0;
}

Parameters
You can also add parameters:

Example
#include <iostream>
using namespace std;

class Car
{public:
int speed(int maxSpeed);

};

int Car::speed(int maxSpeed)
{return maxSpeed;
}

int main() {
Car myObj; // Create an object of Car
cout << myObj.speed(200); // Call the method with an argument
return 0;
}

C++ CONSTRUCTORS

Constructors
 A constructor in C++ is a special method that is automatically called when

an object of a class is created.
 To create a constructor, use the same name as the class, followed by

parentheses ():
Example
class MyClass { // The class
public: // Access specifier
MyClass() { // Constructor
cout << "Hello World!";

}
};

int main() {
MyClass myObj; // Create an object of MyClass (this will call the constructor)
return 0;
}

Note: The constructor has the same name as the class, it is always public, and
it does not have any return value.

Constructor Parameters
 Constructors can also take parameters (just like regular functions), which

can be useful for setting initial values for attributes.
 The following class have brand, model and year attributes, and a

constructor with different parameters. Inside the constructor we set the
attributes equal to the constructor parameters (brand=x, etc). When we call
the constructor (by creating an object of the class), we pass parameters to
the constructor, which will set the value of the corresponding attributes to
the same:

Example
class Car { // The class
public: // Access specifier
string brand; // Attribute
string model; // Attribute
int year; // Attribute
Car(string x, string y, int z) { // Constructor with parameters
brand = x;
model = y;
year = z;
}

};

int main() {
// Create Car objects and call the constructor with different values
Car carObj1("BMW", "X5", 1999);
Car carObj2("Ford", "Mustang", 1969);

// Print values
cout << carObj1.brand << " " << carObj1.model << " " << carObj1.year << "\n";
cout << carObj2.brand << " " << carObj2.model << " " << carObj2.year << "\n";
return 0;
}

Just like functions, constructors can also be defined outside the class. First,
declare the constructor inside the class, and then define it outside of the class
by specifying the name of the class, followed by the scope
resolution :: operator, followed by the name of the constructor (which is the
same as the class):

Example
class Car { // The class
public: // Access specifier
string brand; // Attribute
string model; // Attribute
int year; // Attribute
Car(string x, string y, int z); // Constructor declaration

};

// Constructor definition outside the class
Car::Car(string x, string y, int z) {
brand = x;
model = y;
year = z;
}

int main() {
// Create Car objects and call the constructor with different values
Car carObj1("BMW", "X5", 1999);
Car carObj2("Ford", "Mustang", 1969);

// Print values
cout << carObj1.brand << " " << carObj1.model << " " << carObj1.year << "\n";
cout << carObj2.brand << " " << carObj2.model << " " << carObj2.year << "\n";
return 0;
}

C++ ACCESS SPECIFIERS

Access Specifiers
By now, you are quite familiar with the public keyword that appears in all of
our class examples:

Example
class MyClass { // The class
public: // Access specifier
// class members goes here

};

The public keyword is an access specifier. Access specifiers define how the
members (attributes and methods) of a class can be accessed. In the example
above, the members are public - which means that they can be accessed and
modified from outside the code.

However, what if we want members to be private and hidden from the outsideworld?

In C++, there are three access specifiers:

 public - members are accessible from outside the class
 private - members cannot be accessed (or viewed) from outside the

class
 protected - members cannot be accessed from outside the class,

however, they can be accessed in inherited classes. You will learn more
about Inheritance later.

In the following example, we demonstrate the differences between public
and private members:

Example
class MyClass {
public: // Public access specifier
int x; // Public attribute
private: // Private access specifier
int y; // Private attribute

};

int main()
{ MyClass
myObj;

myObj.x = 25; // Allowed (public)
myObj.y = 50; // Not allowed (private)
return 0;
}

If you try to access a private member, an error occurs:

error: y is private

Note: It is possible to access private members of a class using a public method
inside the same class. See the next chapter (Encapsulation) on how to do this.
Tip: It is considered good practice to declare your class attributes as private (as
often as you can). This will reduce the possibility of yourself (or others) to mess
up the code. This is also the main ingredient of the Encapsulation concept,
which you will learn more about in the next chapter.

Note: By default, all members of a class are private if you don't specify an
access specifier:

Example
class MyClass {
int x; // Private attribute
int y; // Private attribute
};

C++ ENCAPSULATION

Encapsulation
The meaning of Encapsulation, is to make sure that "sensitive" data is hidden
from users. To achieve this, you must declare class variables/attributes
as private (cannot be accessed from outside the class). If you want others to
read or modify the value of a private member, you can provide
public get and setmethods.

Access Private Members
To access a private attribute, use public "get" and "set" methods:

Example
#include <iostream>
using namespace std;

class Employee
{private:
// Private attribute
int salary;

public:
// Setter
void setSalary(int s)
{salary = s;
}
// Getter
int getSalary()
{return salary;
}

};

int main()
{ Employee
myObj;
myObj.setSalary(50000);
cout << myObj.getSalary();
return 0;
}

Example explained
The salary attribute is private, which have restricted access.
The public setSalary() method takes a parameter (s) and assigns it to
the salary attribute (salary = s).
The public getSalary() method returns the value of the private salary attribute.
Inside main(), we create an object of the Employee class. Now we can use
the setSalary() method to set the value of the private attribute to 50000. Then
we call the getSalary() method on the object to return the value.

Why Encapsulation?
 It is considered good practice to declare your class attributes as private

(as often as you can). Encapsulation ensures better control of your data,
because you (or others) can change one part of the code without
affecting other parts

 Increased security of data

C++ INHERITANCE

Inheritance
In C++, it is possible to inherit attributes and methods from one class to
another. We group the "inheritance concept" into two categories:

 derived class (child) - the class that inherits from another class
 base class (parent) - the class being inherited from

To inherit from a class, use the : symbol.

In the example below, the Car class (child) inherits the attributes and methods
from the Vehicle class (parent):

Example
// Base class
class Vehicle
{public:
string brand = "Ford";
void honk() {
cout << "Tuut, tuut! \n" ;
}

};

// Derived class
class Car: public Vehicle
{public:
string model = "Mustang";

};

int main()
{ Car
myCar;
myCar.honk();
cout << myCar.brand + " " + myCar.model;
return 0;
}

Why AndWhen To Use "Inheritance"?
- It is useful for code reusability: reuse attributes and methods of an existing
class when you create a new class.

C++ Multilevel Inheritance

Multilevel Inheritance
 A class can also be derived from one class, which is already derived from

another class.
 In the following example, MyGrandChild is derived from

class MyChild (which is derived from MyClass).
Example
// Base class (parent)
class MyClass
{ public:
void myFunction() {
cout << "Some content in parent class." ;
}

};

// Derived class (child)
class MyChild: public MyClass {
};

// Derived class (grandchild)
class MyGrandChild: public MyChild {
};

int main()
{ MyGrandChild
myObj;
myObj.myFunction();
return 0;
}

C++ Multiple Inheritance

Multiple Inheritance
A class can also be derived from more than one base class, using a comma-
separated list:

Example
// Base class
class MyClass
{public:
void myFunction() {
cout << "Some content in parent class." ;
}

};

// Another base class
class MyOtherClass
{ public:
void myOtherFunction() {
cout << "Some content in another class." ;
}

};

// Derived class
class MyChildClass: public MyClass, public MyOtherClass {
};

int main()
{ MyChildClass
myObj;
myObj.myFunction();
myObj.myOtherFunction();
return 0;
}

C++ Inheritance Access

Access Specifiers
You learned from the Access Specifiers chapter that there are three specifiers
available in C++. Until now, we have only used public (members of a class are
accessible from outside the class) and private (members can only be accessed
within the class). The third specifier, protected, is similar to private, but it can
also be accessed in the inherited class:

Example
// Base class
class Employee {
protected: // Protected access specifier
int salary;

};

// Derived class
class Programmer: public Employee
{public:
int bonus;
void setSalary(int s)
{salary = s;
}
int getSalary()
{return salary;
}

};

int main()
{ Programmer
myObj;
myObj.setSalary(50000);
myObj.bonus = 15000;
cout << "Salary: " << myObj.getSalary() << "\n";
cout << "Bonus: " << myObj.bonus << "\n";
return 0;
}

Polymorphism
C++ POLYMORPHISM

 Polymorphism means "many forms", and it occurs when we have many
classes that are related to each other by inheritance.

 Like we specified in the previous chapter; Inheritance lets us inherit
attributes and methods from another class. Polymorphism uses those
methods to perform different tasks. This allows us to perform a single
action in different ways.

 For example, think of a base class called Animal that has a method
called animalSound(). Derived classes of Animals could be Pigs, Cats, Dogs,
Birds - And they also have their own implementation of an animal sound
(the pig oinks, and the cat meows, etc.):

Example
// Base class
class Animal
{public:
void animalSound() {
cout << "The animal makes a sound \n" ;
}
};

// Derived class
class Pig : public Animal
{public:
void animalSound() {
cout << "The pig says: wee wee \n" ;
}
};

// Derived class
class Dog : public Animal
{public:
void animalSound() {
cout << "The dog says: bow wow \n" ;
}
};

Remember from the Inheritance chapter that we use the : symbol to inherit
from a class.

Now we can create Pig and Dog objects and override
the animalSound() method:

Example
// Base class
class Animal
{public:

void animalSound() {
cout << "The animal makes a sound \n" ;
}
};

// Derived class
class Pig : public Animal
{public:
void animalSound() {
cout << "The pig says: wee wee \n" ;
}

};

// Derived class
class Dog : public Animal
{public:
void animalSound() {
cout << "The dog says: bow wow \n" ;
}
};

int main() {
Animal myAnimal;
Pig myPig;
Dog myDog;

myAnimal.animalSound();
myPig.animalSound();
myDog.animalSound();
return 0;
}

Why AndWhen To Use "Inheritance" and "Polymorphism"?
- It is useful for code reusability: reuse attributes and methods of an existing
class when you create a new class.

C++ FILES

C++ Files
 The fstream library allows us to work with files.
 To use the fstream library, include both the standard <iostream> AND the

<fstream> header file:
Example
#include <iostream>
#include <fstream>

There are three classes included in the fstream library, which are used to
create, write or read files:

Class Description
ofstream Creates and writes to files
ifstream Reads from files
fstream A combination of ofstream and ifstream: creates, reads, and

writes to files

Create and Write To a File
 To create a file, use either the ofstream or fstream class, and specify the

name of the file.
 To write to the file, use the insertion operator (<<).
Example
#include <iostream>
#include <fstream>
using namespace std;

int main() {
// Create and open a text file
ofstreamMyFile("filename.txt");

// Write to the file
MyFile << "Files can be tricky, but it is fun enough!";

// Close the file
MyFile.close();
}

Why do we close the file?
It is considered good practice, and it can clean up unnecessary memory space.

Read a File
 To read from a file, use either the ifstream or fstream class, and the name

of the file.
 Note that we also use a while loop together with the getline() function

(which belongs to the ifstream class) to read the file line by line, and to
print the content of the file:

Example
// Create a text string, which is used to output the text file
string myText;

// Read from the text file
ifstreamMyReadFile("filename.txt");

// Use a while loop together with the getline() function to read the file line by
line
while (getline (MyReadFile, myText)) {
// Output the text from the file
cout << myText;
}

// Close the file
MyReadFile.close();

C++ EXCEPTIONS

C++ Exceptions
 When executing C++ code, different errors can occur: coding errors made

by the programmer, errors due to wrong input, or other unforeseeable
things.

 When an error occurs, C++ will normally stop and generate an error
message. The technical term for this is: C++ will throw an exception (throw
an error).

C++ try and catch
 Exception handling in C++ consist of three keywords: try, throw and catch:
 The try statement allows you to define a block of code to be tested for

errors while it is being executed.
 The throw keyword throws an exception when a problem is detected, which

lets us create a custom error.
 The catch statement allows you to define a block of code to be executed, if

an error occurs in the try block.
 The try and catch keywords come in pairs:
Example
try {
// Block of code to try
throw exception; // Throw an exception when a problem arise
}
catch () {
// Block of code to handle errors
}

Consider the following example:

Example
try {
int age = 15;
if (age >= 18) {
cout << "Access granted - you are old enough.";
} else {
throw (age);
}
}
catch (int myNum) {
cout << "Access denied - You must be at least 18 years old.\n";
cout << "Age is: " << myNum;
}

Example explained
 We use the try block to test some code: If the age variable is less than 18,

we will throw an exception, and handle it in our catch block.
 In the catch block, we catch the error and do something about it.

The catch statement takes a parameter: in our example we use

an int variable (myNum) (because we are throwing an exception of int type
in the try block (age)), to output the value of age.

 If no error occurs (e.g. if age is 20 instead of 15, meaning it will be be
greater than 18), the catch block is skipped:

Example
int age = 20;

You can also use the throw keyword to output a reference number, like a
custom error number/code for organizing purposes:

Example
try {
int age = 15;
if (age >= 18) {
cout << "Access granted - you are old enough.";
} else
{ throw
505;
}
}
catch (int myNum) {
cout << "Access denied - You must be at least 18 years old.\n";
cout << "Error number: " << myNum;
}

Handle Any Type of Exceptions (...)
If you do not know the throw type used in the try block, you can use the "three
dots" syntax (...) inside the catch block, which will handle any type of exception:
Example
try {
int age = 15;
if (age >= 18) {
cout << "Access granted - you are old enough.";
} else
{ throw
505;
}
}
catch (...) {

cout << "Access denied - You must be at least 18 years old.\n";
}

C++ HOW TO ADD TWO NUMBERS

Add Two Numbers
Learn how to add two numbers in C++:

Example
int x = 5;
int y = 6;
int sum = x + y;
cout << sum;

Add Two Numbers with User Input
In this example, the user must input two numbers. Then we print the sum by
calculating (adding) the two numbers:

Example
int x, y;
int sum;
cout << "Type a number: ";
cin >> x;
cout << "Type another number: ";
cin >> y;
sum = x + y;
cout << "Sum is: " << sum;

VIDYAPITH ACADEMY
A unit ofAITDC (OPC) PVT. LTD.

IAF Accredited An ISO 9001:2015 Certified Institute.

Registered Under Ministry of Corporate Affairs

(CIN U80904AS2020OPC020468)

Registered Under MSME, Govt. of India. (UAN- AS04D0000207).

Registered Under MHRD (CR act) Govt. of India.

	Introduction
	What is C++?
	Why Use C++

	C++ Getting Started
	C++ Get Started
	C++ Install IDE
	C++ Quickstart
	Learning C++
	myfirstprogram.cpp

	C++ SYNTAX
	C++ Syntax
	Example
	Example explained

	Omitting Namespace
	Example

	C++ OUTPUT (PRINT TEXT)
	C++ Output (Print Text)
	Example
	Example

	New Lines
	Example
	Example
	Example

	C++ COMMENTS
	C++ Comments
	Single-line Comments
	Example
	Example

	C++ Multi-line Comments
	Example

	C++ VARIABLES
	C++ Variables
	Declaring (Creating) Variables
	Syntax
	Example
	Example
	Example

	Other Types
	Example

	Display Variables
	Example

	Add Variables Together
	Declare Many Variables
	Example

	C++ Identifiers
	C++ Identifiers
	Example

	C++ Constants
	Constants
	Example
	Example

	C++ USER INPUT
	C++ User Input
	Example
	Good To Know

	Creating a Simple Calculator

	C++ DATA TYPES
	C++ Data Types
	Example

	Basic Data Types
	Numeric Types
	int
	float
	double

	Scientific Numbers
	Example

	C++ Boolean Data Types
	Boolean Types
	Example

	C++ Character Data Types
	Character Types
	Example
	Example

	C++ String Data Types
	String Types
	Example
	Example

	C++ OPERATORS
	C++ Operators
	Example
	Example

	Assignment Operators
	Example

	C++ Comparison Operators
	Comparison Operators
	Logical Operators

	C++ STRINGS
	Example
	Example
	String Concatenation
	Example
	Example

	Append
	Example

	C++ Numbers and Strings
	Adding Numbers and Strings

	C++ String Length
	String Length
	Example
	Example

	C++ Access Strings
	Access Strings
	Example

	Change String Characters

	C++ USER INPUT STRINGS
	User Input Strings
	Example
	// Type your first name: John
	Example
	// Type your full name: John Doe
	Example

	Omitting Namespace
	Example

	C++ MATH
	Max and min
	Example
	Example

	C++ <cmath> Header
	Example

	Other Math Functions

	C++ BOOLEANS
	C++ Booleans
	Boolean Values
	Example

	C++ BOOLEAN EXPRESSIONS
	Boolean Expression
	Example
	Example

	C++ IF ... ELSE
	C++ Conditions and If Statements
	The if Statement
	Syntax
	Example
	Example explained

	The else statement
	Syntax
	Example
	Example explained

	C++ Else If
	The else if Statement
	Syntax
	Example
	Example explained

	C++ SWITCH
	C++ Switch Statements
	Example

	The break Keyword
	The default Keyword
	Example

	C++ WHILE LOOP
	C++ Loops
	C++ While Loop
	Syntax
	Example

	The Do/While Loop
	Syntax

	C++ FOR LOOP
	Syntax
	Example
	Example explained

	Example

	C++ BREAK AND CONTINUE
	C++ Break
	Example

	C++ Continue
	Example

	Break and Continue in While Loop
	Break Example
	Continue Example

	C++ ARRAYS
	C++ Arrays
	Access the Elements of an Array
	Example

	Change an Array Element
	Example
	Example

	Loop Through an Array
	Example
	Example

	C++ Omit Array Size
	Omit Array Size
	Omit Elements on Declaration

	C++ REFERENCES
	Creating References
	Example

	Memory Address
	Example
	And why is it useful to know the memory address?

	C++ POINTERS
	Creating Pointers
	Example
	Get Memory Address and Value
	Example

	C++ Modify Pointers
	Modify the Pointer Value
	Example

	C++ FUNCTIONS
	Create a Function
	Syntax
	Example Explained

	Call a Function
	Example
	Example

	Function Declaration and Definition
	Example
	Example
	void myFunction();
	myFunction(); // call the function return 0;
	// Function definition

	Parameters and Arguments
	Syntax
	Example

	Default Parameter Value
	Example

	C++ Multiple Parameters
	Multiple Parameters
	Example

	C++ The Return Keyword
	Return Values
	Example
	Example
	Example

	C++ Functions - Pass By Reference
	Pass By Reference
	Example

	C++ FUNCTION OVERLOADING
	Function Overloading
	Example
	Example
	Example

	C++ OOP
	C++ What is OOP?
	C++ What are Classes and Objects?

	C++ CLASSES AND OBJECTS
	C++ Classes/Objects
	Create a Class
	Example
	Example explained

	Create an Object
	Example

	Multiple Objects
	Example

	C++ CLASS METHODS
	Class Methods
	Inside Example
	Outside Example

	Parameters
	Example

	C++ CONSTRUCTORS
	Constructors
	Example

	Constructor Parameters
	Example
	Example

	C++ ACCESS SPECIFIERS
	Access Specifiers
	Example
	Example
	Example

	C++ ENCAPSULATION
	Encapsulation
	Access Private Members
	Example
	Example explained

	Why Encapsulation?

	C++ INHERITANCE
	Inheritance
	Example
	Why And When To Use "Inheritance"?

	Multilevel Inheritance
	Example

	C++ Multiple Inheritance
	Multiple Inheritance
	Example
	class MyChildClass: public MyClass, public MyOther

	C++ Inheritance Access
	Access Specifiers
	Example
	protected: // Protected access specifier

	C++ POLYMORPHISM
	Example
	Example
	Why And When To Use "Inheritance" and "Polymorphis

	C++ FILES
	C++ Files
	Example

	Create and Write To a File
	Example

	Read a File
	Example

	C++ EXCEPTIONS
	C++ Exceptions
	Example
	Example
	Example explained

	Example
	Example
	Example

	C++ HOW TO ADD TWO NUMBERS
	Add Two Numbers
	Add Two Numbers with User Input

