
OVERVIEW

WhatisjQuery?
jQuery is a fast and concise JavaScript Library created by John Resig in 2006
with a nice motto:Write less, do more. jQuery simplifies HTML document
traversing, event handling, animating, and Ajax interactions for rapid web
development. jQuery is a JavaScript toolkit designed to simplify various tasks
by writing less code. Here is the list of important core features supported by
jQuery:
 DOM manipulation: The jQuery made it easy to select DOM elements,

negotiate them and modifying their content by using cross-browser open
source selector engine calledSizzle.

 Event handling: The jQuery offers an elegantway to capture awide variety of
events,such as a user clicking on a link, without the need to clutter the
HTML code itself withevent handlers.

 AJAX Support: The jQuery helps you a lot to develop a responsive and
feature-rich site using AJAX technology.

 Animations: The jQuery comeswith plenty of built-in animation effects
which you canuse in your websites.

 Lightweight: The jQuery is very lightweight library - about 19KB in size
(Minified andgzipped).

 Cross Browser Support: The jQuery has cross-browser support, and works
well in IE 6.0+, FF 2.0+, Safari 3.0+, Chrome and Opera 9.0+

 Latest Technology: The jQuery supports CSS3 selectors and basic XPath
syntax.

Howto use jQuery?
There are twoways to use jQuery.
 Local Installation − You can download jQuery library on your local

machine and include it in your HTML code.
 CDN Based Version − You can include jQuery library into your HTML code

directly from Content Delivery Network (CDN).

Local
Installation

 Go to the https://jquery.com/download/ to download the latest version
available.

 Now, insert downloaded jquery-2.1.3.min.js file in a directory of your
website, e.g. /jquery.

Example:
Now, you can include jquery library in your HTML file as follows:
<html>
<head>
<title>The jQueryExample</title>

<script type="text/javascript" src="/jquery/jquery-2.1.3.min.js"></script>
<script type="text/javascript">
$(document).ready(function(){ doc
ument.write("Hello,World!");

});
</script>

</head>
<body>
<h1>Hello</h1>

</body>
</html>

This will produce the following result-

https://jquery.com/download/

Hello, World!

CDNBasedVersion
You can include jQuery library into your HTML code directly from Content
Delivery Network(CDN). Google and Microsoft provides content deliver for the
latest version.
We are using Google CDN version of the library throughout this tutorial.

Example:
Now let us rewrite above example using jQuery library from Google CDN.
<html>
<head>
<title>The jQueryExample</title>

<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

</script>
<script type="text/javascript">
$(document).ready(function(){ doc

ument.write("Hello,World!");

});
</script>

</head>
<body>
<h1>Hello</h1>

</body>
</html>

This will produce the following result:

Hello, World!

HowtoCallajQueryLibraryFunctions?
As almost everything, we do when using jQuery reads or manipulates the
document object model (DOM), we need to make sure that we start adding

http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js

events etc. as soon as the DOM isready.
If you want an event to work on your page, you should call it inside the
$ (document).ready()function. Everything inside it will load as soon as the DOM
isloaded and before the page contents are loaded.
To do this, we register a ready event for the document as follows:

$(document).ready(function() {
// do stuff when DOM is ready

});

To call upon any jQuery library function, use HTML script tags as shown below:

<html>
<head>
<title>The jQuery Example</title>

<script type="text/javascript"
src="/jquery/jquery-
1.3.2.min.js"></script>
<script type="text/javascript" language="javascript">
// <![CDATA[
$(document).ready(function() {

$("div").click(function()
{alert("Hello world!");

});
});
//]]>
</script>

</head>
<body>

<div id="newdiv">
Click on this to see a dialogue box.
</div>

</body>

</html>
This will produce the following result:

Click on this to see a dialogue box.

HowtoUseCustomScripts?
It is better to write our custom code in the custom JavaScript file : custom.js, as
follows:

/* Filename: custom.js */

$(document).ready(function() {

$("div").click(function()

{alert("Hello world!");

});
});

Now we can include custom.js file in our HTML file as follows:

<html>
<head>
<title>The jQuery Example</title>

<script type="text/javascript"
src="/jquery/jquery-
1.3.2.min.js"></script>
<script type="text/javascript"
src="/jquery/custom.js"></script>

</head>
<body>

<div id="newdiv">
Click on this to see a dialogue box.
</div>

</body>

</html>
This will produce the following result:

Click on this to see a dialogue box.

UsingMultipleLibraries
You can use multiple libraries all together without conflicting each others. For
example, you can use jQuery and MooTool javascript libraries together. You can
check jQuery noConflict Method for more detail.

jQuery noConflict() Method
Many JavaScript libraries use$ as a function or variable name, just as jQuery does.
In jQuery'scase, $ is just an alias for jQuery, so all the functionality is available
without using $.
Run $.noConflict()method to give control of the $ variable back to whichever
library first implemented it. This helps us to make sure that jQuery doesn't
conflict with the $ object of other libraries.
Here is a simple way of avoiding any conflict:

// Import other Library
// Import jQuery Library
$.noConflict();
// Code that uses other library's $ can follow here.

This technique is especially effective in conjunction with the .ready() method's
ability to aliasthe jQuery object, as within the .ready() we can use $ if we wish
without fear of conflicts later:

// Import other library
// Import jQuery
$.noConflict();
jQuery(document).ready(function($) {

// Code that uses jQuery's $ can follow here.
});
// Code that uses other library's $ can follow here.

Whatis Next?
Do not worry toomuch if you did not understand the above examples. You are
going to graspthem very soon in subsequent chapters. In the next chapter, we
would try to cover few basicconcepts which are coming from conventional
JavaScript.

BASICS

jQuery is a framework built using JavaScript capabilities. So, you can use all the
functions and other capabilities available in JavaScript. This chapter would explain
most basic conceptsbut frequently used in jQuery.

String

A string in JavaScript is an immutable object that contains none, one or many
characters. Following are the valid examples of a JavaScript String:
"This is JavaScript String"
'This is JavaScript String'
'This is "really" a JavaScript String'
"This is 'really' a JavaScript String"

Numbers
Numbers in JavaScript are double-precision 64-bit format IEEE 754 values. They
areimmutable, just as strings. Following are the valid examples of a JavaScript
Numbers:

5350
120.27
0.26

Boolean
A boolean in JavaScript can be either true or false. If a number is zero, it defaults

to false.If there is an empty string, it defaults to false.

Following are the valid examples of a JavaScript Boolean:
True // true
False // false
0 // false
1 // true
… // false
hello" // true

Objects
JavaScript supports Object concept very well. You can create an object using the
object literalas follows:

var emp =
{ name:
"Zara",age:
10

};

You can write and read properties of an object using the dot notation as follows:

// Getting object properties
emp.name // ==> Zaraemp.age // ==> 10

// Setting object properties
emp.name = "Daisy" // <== Daisy

emp.age = 20 // <== 20

Arrays

You can define arrays using the array literal as follows:
var x = [];

var y = [1, 2, 3, 4, 5];

An array has a length property that is useful for iteration:

var x = [1, 2, 3, 4, 5];
for (var i = 0; i < x.length; i++) {

// Do something with x[i]
}

Functions
A function in JavaScript can be either named or anonymous. A named function can
be definedusing function keyword as follows:

function named(){
// do some stuff here

}

An anonymous function can be defined in similar way as a normal function but it
would not have any name. An anonymous function can be assigned to a variable
or passed to amethodas shown below.

var handler = function (){
// do some stuff here

}

JQuery makes a use of anonymous functions very frequently as follows:

$(document).ready(function(){
// do some stuff here

});

Arguments
JavaScript variablearguments is a kindof arraywhich has length property. Following
exampleshows it very well:

function func(x){
console.log(typeof x, arguments.length);
}
func(); //==> "undefined", 0
func(1); //==> "number", 1
func("1", "2", "3"); //==> "string", 3

The arguments object also has a callee property, which refers to the function
you're inside.For example:

function func() {
return arguments.callee;

}
func(); // ==> func

Context
JavaScript famous keyword this always refers to the current context. Within a
function
thiscontext can change, depending on how the function is called:

$(document).ready(function() {
// this refers to window.document

});

$("div").click(function() {
// this refers to a div DOM element

});

You can specify the context for a function call using the function-built-in methods
call() andapply()methods. The difference between them is how they pass
arguments. Call passes allarguments through as arguments to the function, while
apply accepts an array as the arguments.

function scope() {
console.log(this, arguments.length);

}

scope() // window, 0
scope.call("foobar", [1,2]); //==> "foobar", 1
scope.apply("foobar", [1,2]); //==> "foobar", 2

Scope
The scope of a variable is the region of your program in which it is defined.
JavaScript variablewill have only two scopes.
 Global Variables: A global variable has global scope which means it is

definedeverywhere in your JavaScript code.
 Local Variables: A local variable will be visible only within a function where

it isdefined. Function parameters are always local to that function.
Within the body of a function, a local variable takes precedence over
a global variable withthe same name:

var myVar = "global"; // ==> Declare a global variable
function () {
var myVar = "local"; // ==> Declare a local variable
document.write(myVar); // ==> local }

Callback
A callback is a plain JavaScript function passed to some method as an argument or
option. Some callbacks are just events, called to give the user a chance to react
when a certain stateis triggered. jQuery's event system uses such callbacks
everywhere for example:

$("body").click(function(event)
{ console.log("clicked: " +
event.target);

});

Most callbacks provide arguments and a context. In the event-handler example,
the callbackis called with one argument, an Event. Some callbacks are required to
return something, others make that return value optional. To prevent a form
submission, a submit event handlercan return false as follows:

$("#myform").submit(function
() {return false;

});

Closures
Closures are createdwhenever a variable that is defined outside the current scope
is accessedfrom within some inner scope. Following example shows how the
variable counter is visible within the create, increment, and print functions, but
not outside of them:

function create() {

var counter = 0;
return {
increment: function()
{counter++;

},
print: function()

{ console.log(counter); }
}

}
var c = create();
c.increment();
c.print(); // ==>1

This pattern allows you to create objects with methods that operate on data that
isn't visibleto the outside world. It should be noted that data hiding is the very
basis of object-orientedprogramming.

ProxyPattern
A proxy is an object that can be used to control access to another object. It
implements the same interface as this other object and passes on any method
invocations to it. This other object is often called the real subject. A proxy can be

instantiated in place of this real subjectand allow it to be accessed remotely. We
can saves jQuery's setArray method in a closure and overwrites it as follows:

(function() {
// log all calls to setArray
var proxied = jQuery.fn.setArray;

jQuery.fn.setArray = function()
{console.log(this, arguments);
return proxied.apply(this, arguments);

};
}) ();

The above wraps its code in a function to hide the proxied variable. The proxy then
logs all calls to the method and delegates the call to the original method. Using
apply(this, arguments) guarantees that the caller won't be able to notice the
difference between the original and the proxied method.

Built-in
Functions

JavaScript comes along with a useful set of built-in functions. These methods can
be used tomanipulate Strings, Numbers and Dates.
Following are the important JavaScript functions:

Method Description
charAt() Returns the character at the specified index.
concat() Combines the text of two strings and returns a new

string.
forEach() Calls a function for each element in the array.
indexOf() Returns the index within the calling String object of

the firstoccurrence of the specified value, or -1 if not
found.

length() Returns the length of the string.

pop() Removes the last element from an array and returns
thatelement.

push() Adds one or more elements to the end of an array and
returnsthe new length of the array.

reverse() Reverses the order of the elements of an array --
the firstbecomes the last, and the last becomes the
first.

sort() Sorts the elements of an array.
substr() Returns the characters in a string beginning at the

specifiedlocation through the specified number of
characters.

toLowerCase() Returns the calling string value converted to lower case.
toString() Returns the string representation of the number's value.
toUpperCase() Returns the calling string value converted to uppercase.

A complete list of JavaScript built-in function is available here − Built-in
Functions.

TheDocumentObject
Model

The Document Object Model is a tree structure of various elements of HTML as
follows:
<html>
<head>

<title>the title</title>
</head>
<body>

<div>
<p>This is a paragraph.</p>
<p>This is second paragraph.</p>
<p>This is third paragraph.</p>
</div>

</body>
</html>

http://www.tutorialspoint.com/javascript/javascript_builtin_functions.htm
http://www.tutorialspoint.com/javascript/javascript_builtin_functions.htm

This will produce the following result:

This is a paragraph.

This is second paragraph.

This is third paragraph

Following are the important points about the above tree structure:
 The <html> is the ancestor of all the other elements; in other words, all the

otherelements are descendants of <html>.
 The <head> and <body> elements are not only descendants, but children of

<html>,as well.
 Likewise, in addition to being the ancestor of <head> and <body>, <html> is

alsotheir parent.
 The <p> elements are children (and descendants) of <div>, descendants of

<body>and <html>, and siblings of each other <p> elements.

While learning jQuery concepts, it will be helpful to have understanding on
DOM, if you arenot aware ofDOM, then Iwould suggest you to go through our
simple tutorial on DOMTutorial.

SELECTORS
The jQuery library harnesses the power of Cascading Style Sheets (CSS)
selectors to let us quickly and easily access elements or groups of elements in
the Document Object Model (DOM).
A jQuery Selector is a function whichmakes use of expressions to find out
matching elementsfrom a DOM based on the given criteria.

The$()FactoryFunction
All type of selectors available in jQuery, always start with the dollar sign and

parentheses: $(). The factory function $()makes use of the following three building
blocks while selecting elements in a given document:

S.N. Selector & Description
1 Tag Name

Represents a tag name available in the DOM. For example $('p')
selects all paragraphs <p> in the document.

2 Tag ID
Represents a tag available with the given ID in the DOM. For example
$('#some-id') selects the single element in the document that has an
ID of some-id.

3 Tag Class
Represents a tag available with the given class in the DOM. For
example
$('.some-class') selects all elements in the document that have a
class of some-class.

All the above items can be used either on their own or in combination with other
selectors. All the jQuery selectors are based on the same principle except some
tweaking.
NOTE: The factory function $() is a synonym of jQuery() function. So in case you
are usingany other JavaScript library where $ sign is conflicting with some thing
else then you can replace $ sign by jQuery name and you can use function
jQuery() instead of $().

Example
Following is a simple example which makes use of Tag Selector. This
would select all theelements with a tag name p.
<html>
<head>
<title>the title</title>

<script type="text/javascript"
src="/jquery/jquery-1.3.2.min.js"></script>

<script type="text/javascript" language="javascript">
$(document).ready(function

() {var pars = $("p");
for(i=0; i<pars.length; i++){

alert("Found paragraph: " + pars[i].innerHTML);
}

});
</script>
</head>

<body>
<div>

<p class="myclass">This is a paragraph.</p>
<p id="myid">This is second paragraph.</p>
<p>This is third paragraph.</p>

</div>
</body>
</html>

This will produce the the following result:

This is a paragraph.

This is second paragraph.

This is third paragraph.

HowtoUse Selectors?
The selectors are very useful and would be required at every step while using
jQuery. Theyget the exact element that you want from your HTML document.
Following table lists down few basic selectors and explains them with examples.

S.N. Selector &Description
1 Name

Selects all elements which match with the given element Name.
2
pg. 17

#ID
Selects a single element which matches with the given ID.

3 .Class
Selects all elements which matches with the given Class.

4 Universal (*)
Selects all elements available in a DOM.

5 Multiple Elements E, F, G
Selects the combined results of all the specified selectors E, F or G.

jQuery-ElementNameSelector

Description
The element selector selects all the elements that have a tag name of T.

Syntax
Here is the simple syntax to use this selector −

$('tagname')

Parameters
Here is the description of all the parameters used by this selector −

 tagname − Any standard HTML tag name like div, p, em, img, li etc.

Returns
Like any other jQuery selector, this selector also returns an array filled with
the foundelements.

Example:
 $('p') − Selects all elements with a tag name of p in the document.
 $('div') − Selects all elements with a tag name of div in the document.

Following example would select all the divisions and will apply yellow color to their
background −
<html>

<head>
<title>The Selecter Example</title>

pg. 18
<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">
</script>

<script type="text/javascript" language="javascript">
$(document).ready(function() {

/* This would select all the divisions */
$("div").css("background-color", "yellow");

});
</script>

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p>

</div>

<div class="medium" id="div2">
<p>This is second division of the DOM.</p>

</div>

<div class="small" id="div3">
<p>This is third division of the DOM</p>

</div>

</body>
</html>

This will produce the following result:
This is first division of the DOM.

This is second division of the DOM.

This is third division of the DOM

jQuery-Element ID Selector
Description
pg. 19

http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js

The element ID selector selects a single element with the given id attribute.

Syntax
Here is the simple syntax to use this selector −

$('#elementid')

Parameters
Here is the description of all the parameters used by this selector −

 Elementid: This would be an element ID. If the id contains any special
characters likeperiods or colons you have to escape those characters with
backslashes.

Returns
Like any other jQuery selector, this selector also returns an array filled with
the foundelement.

Example
 $('#myid') − Selects a single element with the given id myid.
 $('div#yourid') − Selects a single division with the given id yourid.

Following example would select second division and will apply yellow color to its
backgroundas below:
<html>

<head>
<title>The Selecter Example</title>
<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">
</script>

<script type="text/javascript" language="javascript">
$(document).ready(function() {

/* This would select second division only*/
$("#div2").css("background-color", "yellow");

});
</script>

pg. 20

http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js

pg. 21

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p>

</div>

<div class="medium" id="div2">
<p>This is second division of the DOM.</p>

</div>

<div class="small" id="div3">
<p>This is third division of the DOM</p>

</div>

</body>
</html>

This will produce the following result:
This is first division of the DOM.
This is second division of the DOM.
This is third division of the DOM

jQuery-ElementClass Selector
Description
The element class selector selects all the elements which match with
the given class of theelements.

Syntax
Here is the simple syntax to use this selector:

$('.classid')

Parameters
Here is the description of all the parameters used by this selector −

 classid − This is class ID available in the document.

Returns
Like any other jQuery selector, this selector also returns an array filled with
the foundelements.

Example
 $('.big') − Selects all the elements with the given class ID big.
 $('p.small') − Selects all the paragraphs with the given class ID small.
 $('.big.small') − Selects all the elements with a class ofbig and small.

Following examplewould select all divisions with class .big andwill
apply yellow colorto its background
<html>

<head>
<title>The Selecter Example</title>

<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

</script>

<script type="text/javascript" language="javascript">
$(document).ready(function() {

/* This would select second division only*/
$(".big").css("background-color", "yellow");

});
</script>

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p>

</div>

<div class="medium" id="div2">

pg. 22
<p>This is second division of the DOM.</p>

http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js

</div>

<div class="small" id="div3">
<p>This is third division of the DOM</p>

</div>

</body>
</html>

This will produce the following result:

This is first division of the DOM.

This is second division of the DOM.

This is third division of the DOM

jQuery-Universal Selector

Description
The universal selector selects all the elements available in the document.

Syntax
Here is the simple syntax to use this selector −

$('*')
Parameters
Here is the description of all the parameters used by this selector −

* −A symbolic star.

Returns
Like any other jQuery selector, this selector also returns an array filled with the
found elements.

Example
 $('*') selects all the elements available in the document.

Following example would select all the elements and will apply yellow color to
their background. Try to understand that this selector will select every element
including head, body etc.
pg. 23

<html>
<head>

<title>The Selecter Example</title>
<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">
</script>

<script type="text/javascript" language="javascript">
$(document).ready(function() {

/* This would select all the elements */
$("*").css("background-color", "yellow");

});
</script>

</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p>

</div>

<div class="medium" id="div2">
<p>This is second division of the DOM.</p>
</div>

<div class="small" id="div3">
<p>This is third division of the DOM</p>

</div>

</body>
</html>

This will produce the following result:

This is first division of the DOM.

This is second division of the DOM.
pg. 24

http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js

This is third division of the DOM

jQuery–Multiple Elements Selector

Description
This Multiple Elements selector selects the combined results of all the specified
selectors E, For G.
You can specify any number of selectors to combine into a single result. Here
order of theDOM elements in the jQuery object aren't necessarily identical.

Syntax
Here is the simple syntax to use this selector −

$('E, F, G,........ ')

Parameters
Here is the description of all the parameters used by this selector −

 E −Any valid selector
 F −Any valid selector
 G −Any valid selector

Returns
Like any other jQuery selector, this selector also returns an array filled with
the foundelements.
Example

 $('div, p') − selects all the elements matched by div orp.
 $('p strong, .myclass') − selects all elements matched by strong that are

descendants of an element matched by p as well as all elements that
have a classofmyclass.

 $('p strong, #myid') − selects a single elements matched by strong that is
descendant of an element matched by p as well as element whose id is
myid.

Following example would select elements with class ID big and element with ID div3
and willapply yellow color to its background −
pg. 25

pg. 26

<html>
<head>

<title>The Selecter Example</title>

<script type="text/javascript"
src="http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js">

</script>

<script type="text/javascript" language="javascript">
$(document).ready(function() {

$(".big, #div3").css("background-color", "yellow");
});

</script>
</head>
<body>

<div class="big" id="div1">
<p>This is first division of the DOM.</p>

</div>

<div class="medium" id="div2">
<p>This is second division of the DOM.</p>

</div>

<div class="small" id="div3">
<p>This is third division of the DOM</p>

</div>

</body>
</html>

This will produce the following result:

This is first division of the DOM.

This is second division of the DOM.

This is third division of the DOM

http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js
http://ajax.googleapis.com/ajax/libs/jquery/2.1.3/jquery.min.js

SelectorsExamples
Similar to above syntax and examples, the following examples would give you
understandingon using different type of other useful selectors:

S.N. Selector & Description
1 $('*')

This selector selects all elements in the document.
2 $("p > *")

This selector selects all elements that are children of a paragraph
element.

3 $("#specialID")
This selector function gets the element with id="specialID".

4 $(".specialClass")
This selector gets all the elements that have the class of special
Class.

5 $("li:not(.myclass)")
Selects all elements matched by that do not have
class="myclass".

6 $("a#specialID.specialClass")
This selector matches links with an id of specialID and a class of
specialClass.

7 $("p a.specialClass")
This selector matches links with a class of specialClass declared
within <p>elements.

8 $("ul li:first")
This selector gets only the first element of the .

9 $("#container p")
Selects all elements matched by <p> that are descendants of an
element thathas an id of container.

10 $("li > ul")
Selects all elements matched by that are children of an
element matchedby

11 $("strong + em")
Selects all elementsmatched by that immediately follow a
sibling elementmatched by .

pg. 27

12 $("p ~ ul")
Selects all elements matched by that follow a sibling
element matched by
<p>.

13 $("code, em, strong")
Selects all elements matched by <code> or or .

14 $("p strong, .myclass")
Selects all elements matched by that are descendants
of an elementmatched by <p> as well as all elements that have a
class ofmyclass.

15 $(":empty")
Selects all elements that have no children.

16 $("p:empty")
Selects all elements matched by <p> that have no children.

17 $("div[p]")
Selects all elementsmatched by <div> that contain an element
matched by <p>.

18 $("p[.myclass]")
Selects all elements matched by <p> that contain an element
with a classofmyclass.

19 $("a[@rel]")
Selects all elements matched by <a> that have a rel attribute.

20 $("input[@name=myname]")
Selects all elements matched by <input> that have a name value
exactly equaltomyname.

21 $("input[@name^=myname]")
Selects all elements matched by <input> that have a name
value beginningwithmyname.

22 $("a[@rel$=self]")
Selects all elements matched by <a> that have rel attribute value
ending with
self.

23 $("a[@href*=domain.com]")
Selects all elements matched by <a> that have a href value
containingdomain.com.

pg. 28

24 $("li:even")
Selects all elements matched by that have an even index
value.

25 $("tr:odd")
Selects all elements matched by <tr> that have an odd index
value.

26 $("li:first")
Selects the first element.

27 $("li:last")
Selects the last element.

28 $("li:visible")
Selects all elements matched by that are visible.

29 $("li:hidden")
Selects all elements matched by that are hidden.

30 $(":radio")
Selects all radio buttons in the form.

31 $(":checked")
Selects all checked boxes in the form.

32 $(":input")
Selects only form elements (input, select, textarea, button).

33 $(":text")
Selects only text elements (input[type=text]).

34 $("li:eq(2)")
Selects the third element.

35 $("li:eq(4)")
Selects the fifth element.

36 $("li:lt(2)")
Selects all elements matched by element before the third
one; in otherwords, the first two elements.

37 $("p:lt(3)")
Selects all elements matched by <p> elements before the fourth
one; in otherwords the first three <p> elements.

38 $("li:gt(1)")
Selects all elements matched by after the second one.

39
pg. 29

$("p:gt(2)")
Selects all elements matched by <p> after the third one.

40 $("div/p")
Selects all elementsmatched by <p> that are children of an
element matched by
<div>.

41 $("div//code")
Selects all elements matched by <code>that are descendants of
an elementmatched by <div>.

42 $("//p//a")
Selects all elements matched by <a> that are descendants of
an elementmatched by <p>

43 $("li:first-child")
Selects all elements matched by that are the first child of their
parent.

44 $("li:last-child")
Selects all elements matched by that are the last child of their
parent.

45 $(":parent")
Selects all elements that are the parent of another element,
including text.

46 $("li:contains(second)")
Selects all elements matched by that contain the text second.

You can use all the above selectors with any HTML/XML element in generic way.
For exampleif selector $("li:first") works for element then $("p:first") would
also work for <p> element.

VIDYAPITH ACADEMY
A unit of AITDC (OPC) PVT. LTD.

IAF Accredited An ISO 9001:2015 Certified Institute.

Registered Under Ministry of Corporate Affairs

(CIN U80904AS2020OPC020468)

Registered Under MSME, Govt. of India. (UAN- AS04D0000207).

Registered Under MHRD (CR act) Govt. of India.

pg. 30

	OVERVIEW
	How to use jQuery?
	Local Installation
	Example:

	CDNBasedVersion
	Example:

	HowtoCallajQueryLibraryFunctions?
	HowtoUseCustomScripts?
	UsingMultipleLibraries
	Whatis Next?

	BASICS
	String
	Numbers
	Boolean
	Objects
	Arrays
	Functions
	Arguments
	Context
	Scope
	Callback
	Closures
	ProxyPattern
	Built-in Functions
	TheDocumentObject Model

	SELECTORS
	The$()FactoryFunction
	Example

	How to Use Selectors?
	jQuery-ElementNameSelector
	Description
	Syntax
	Parameters
	Returns
	Example:

	jQuery-Element ID Selector
	Description
	Syntax
	Parameters
	Returns
	Example

	jQuery-Element Class Selector
	Description
	Syntax
	Parameters
	Returns
	Example

	jQuery- Universal Selector
	Description
	Syntax
	Parameters
	Returns
	Example
	Description
	Syntax
	Parameters
	Returns
	Example

	Selectors Examples

