
INDEX

Unit Contents Page

I FUNDAMENTALS OF DIGITAL TECHNIQUES 01

II
BOOLEAN ALGEBRA AND THEOREMS

10

III DESIGN OF COMBINATIONAL CIRCUITS 26

IV SEQUENTIAL CIRCUITS 58

V CAPABILITIES ANDMINIMIZATION OF SEQUENTIAL
MACHINES

98

DIGITAL SYSTEM DESIGN

1

UNIT-I
FUNDAMENTALS OF DIGITAL TECHNIQUES

NUMBER SYSTEMS & CODES

• Philosophy of number systems
• Complement representation of negative numbers

• Binary arithmetic

• Binary codes
• Error detecting & error correcting codes:Hamming codes

HISTORY OF THE NUMERAL SYSTEMS:

A numeral system (or system of numeration) is a linguistic system and mathematical

notation for representing numbers of a given set by symbols in a consistent manner. For example,

It allows the numeral "11" to be interpreted as the binary numeral for three, the decimal numeral for

eleven, or other numbers in different bases. Ideally, a numeral system will:

• Represent a useful set of numbers (e.g. all whole numbers, integers, or real numbers)

• Give every number represented a unique representation (or at least a standard representation)
Reflect the algebraic and arithmetic structure of the numbers.

For example, the usual decimal representation of whole numbers gives every whole number a unique

representation as a finite sequence of digits, with the operations of arithmetic (addition, subtraction,

multiplication and division) being present as the standard algorithms of arithmetic. However, when

decimal representation is used for the rational or real numbers, the representation is no longer

unique: many rational numbers have two numerals, a standard one that terminates, such as 2.31, and

another that recurs, such as 2.309999999 Numerals which terminate have no non-zero digits after a

given position. For example,numerals like 2.31 and 2.310 are taken to be the same, except in the

experimental sciences, where greater precision is denoted by the trailing zero.

The most commonly used system of numerals is known as Hindu-Arabic numerals.Great Indian

mathematicians Aryabhatta of Kusumapura (5th Century) developed the place value notation.

Brahmagupta (6th Century) introduced the symbol zero.

BINARY

2

The ancient Indian writer Pingala developed advanced mathematical concepts for describing

prosody, and in doing so presented the first known description of a binary numeral system.A full

set of 8 trigrams and 64 hexagrams, analogous to the 3-bit and 6-bit binary numerals, were known

to the ancient Chinese in the classic text I Ching. An arrangement of the hexagrams of the I Ching,

ordered according to the values of the corresponding binary numbers (from 0 to 63), and a method

for generating thesame, was developed by the Chinese scholar and philosopher Shao Yong in the

11th century.

In 1854, British mathematician George Boole published a landmark paper detailing an algebraic

system of logic that would become known as Boolean algebra. His logical calculus was to become

instrumental in the design of digital electronic circuitry. In 1937, Claude Shannon produced his

master's thesis at MIT that implemented Boolean algebra and binary arithmetic using electronic

relays and switches for the first time in history. Entitled A SymbolicAnalysis of Relay and Switching
Circuits, Shannon's thesis essentially founded practical digital circuit design.

Binary codes
Binary codes are codes which are represented in binary system with modification from the original
ones.

• Weighted Binary codes
• Non Weighted Codes

Weighted binary codes are those which obey the positional weighting principles, each position of the

number represents a specific weight. The binary counting sequence is an example.

3

Reflective Code
A code is said to be reflective when code for 9 is complement for the code for 0, and so is for 8

and 1 codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective, whereas the

8421 code is not.

Sequential Codes
A code is said to be sequential when two subsequent codes, seen as numbers in binary

representation, differ by one. This greatly aids mathematical manipulation of data. The 8421 and Excess-

3 codes are sequential, whereas the 2421 and 5211 codes are not.

Non weighted codes
Non weighted codes are codes that are not positionally weighted. That is, each position within the binary

number is not assigned a fixed value. Ex: Excess-3 code

Excess-3 Code
Excess-3 is a non weighted code used to express decimal numbers. The code derives its name from the

fact that each binary code is the corresponding 8421 code plus 0011(3).

Gray Code
The gray code belongs to a class of codes called minimum change codes, in which only one bit in

the code changes when moving from one code to the next. The Gray code is non-weighted code, as

the position of bit does not contain any weight. The gray code is a reflective digital code which has

the special property that any two subsequent numbers codes differ by only one bit. This is also called

a unitdistance code. In digital Gray code has got a special place.

Binary to Gray Conversion

4

• Gray Code MSB is binary code MSB.
• Gray Code MSB-1 is the XOR of binary code MSB and MSB-1.
• MSB-2 bit of gray code is XOR of MSB-1 and MSB-2 bit of binary code.
• MSB-N bit of gray code is XOR of MSB-N-1 and MSB-N bit of binary code.

Error detection codes

1) Parity bits

A parity bit is a bit that is added to a group of source bits to ensure that the number of set bits (i.e.,

bits with value 1) in the outcome is even or odd. It is a very simple scheme that can be used to detect

single or any other odd number (i.e., three, five, etc.) of errors in the output. An even number of

flipped bits will make the parity bit appear correct even though the data is erroneous.

2) Checksums

A checksum of a message is a modular arithmetic sum of message code words of a fixed word length

(e.g.,byte values). The sum may be negated by means of a one's-complement prior to transmission

to detect errorsresulting in all-zero messages.Checksum schemes include parity bits, check digits,

and longitudinal redundancy checks. Some checksum schemes, such as the Luhn algorithm and the

Verhoeff algorithm, are specifically designed to detect errorscommonly introduced by humans in

writing down or remembering identification numbers.

3) Cyclic redundancy checks (CRCs)

A cyclic redundancy check (CRC) is a single-burst-error-detecting cyclic code and non-secure hash

function designed to detect accidental changes to digital data in computer networks. It is

characterized by specification of a so-called generator polynomial, which is used as the divisor in a
polynomial long division over a finite field, taking the input data as the dividend, and where the

remainder becomes the result.Cyclic codes have favorable properties in that they are well suited for

detecting burst errors. CRCs are particularly easy to implement in hardware, and are therefore

commonly used in digital networks and storage devices such as hard disk drives.Even parity is a

special case of a cyclic redundancy check, where the single-bit CRC is generated by the divisor x+1.

NUMBER BASE CONVERSIONS
Any number in one base system can be converted into another base system Types

1) decimal to any base

2) Any base to decimal

5

3) Any base to Any base

Decimal to Binary

6

Octal To Binary

Error Detection and Correction Codes

• No communication channel or storage device is completely error-free

• As the number of bits per area or the transmission rate increases,

more errors occur. • Impossible to detect or correct 100% of the

errors Hamming Codes

1. One of the most effective codes for error-recovery
2. Used in situations where random errors are likely to occur

3. Error detection and correction increases in proportion to the number of parity bits (error-

checking bits) added to the end of the information bits

7

code word = information bits + parity bits

Hamming distance: the number of bit positions in which two code words differ.

10001001

10110001

* * *

Minimum Hamming distance or D(min) : determines its error detecting and correcting
capability.

4) Hamming codes can always detect D(min) – 1 errors, but can only correct half of those errors.

5) Single parity bit can only detect error, not correct it

6) Error-correcting codes require more than a single parity bit EX. 0 0 0 0 0

0 1 0 1 1
1 0 1 1 0

1 1 1 0 1

Minimum Hamming distance = 3

Can detect up to 2 errors and correct 1 error
Cyclic Redundancy Check

1. Let the information byte F = 1001011

2. The sender and receiver agree on an arbitrary binary pattern P. Let P = 1011.
3. Shift F to the left by 1 less than the number of bits in P. Now, F = 1001011000.

8

4. Let F be the dividend and P be the divisor. Perform “modulo 2 division”.

5. After performing the division, we ignore the quotient. We got 100 for the remainder, which

becomes the actual CRC checksum.

6. Add the remainder to F, giving the message M: 1001011 + 100 =

1001011100 = M

UNIT-II

BOOLEAN ALGEBRA AND THEOREMS

• Fundamental postulates of Boolean algebra
• Basic theorems and properties
• Switching functions
• Canonical and Standard forms
• Algebraic simplification digital logic gates, properties of XOR gates
• Universal gates
• Multilevel NAND/NOR realizations

Boolean Algebra: Boolean algebra, like any other deductive mathematical system, may be defined

with aset of elements, a set of operators, and a number of unproved axioms or postulates. A set of

elements is anycollection of objects having a common property. If S is a set and x and y are certain

9

objects, then x Î Sdenotes that x is a member of the set S, and y ÏS denotes that y is not an element

of S. A set with adenumerable number of elements is specified by braces: A = {1,2,3,4}, i.e. the

elements of set A are thenumbers 1, 2, 3, and 4. A binary operator defined on a set S of elements is

a rule that assigns to each pair ofelements from S a unique element from S._ Example: In a*b=c,

we say that * is a binary operator if it specifies a rule for finding c from the pair (a,b)and also if a,

b, c Î S.

CLOSURE: The Boolean system is closed with respect to a binary operator if for every pair of

Boolean values,it produces a Boolean result. For example, logical AND is closed in the Boolean

system because it accepts only Boolean operands and produces only Boolean results.

A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator

specifies a rule for obtaining a unique element of S.

For example, the set of natural numbers N = {1, 2, 3, 4, … 9} is closed with respect to the binary

operator plus (+) by the rule of arithmetic addition, since for any a, b Î N we obtain a unique c Î N
by the operation a + b = c.

ASSOCIATIVE LAW:

A binary operator * on a set S is said to be associative whenever (x * y) * z = x * (y * z) for all x, y, z

Î S, forall Boolean values x, y and z.

COMMUTATIVE LAW:

A binary operator * on a set S is said to be commutative whenever x * y = y * x for all x, y, z є S

IDENTITY ELEMENT:

A set S is said to have an identity element with respect to a binary operation * on S if there exists an

element e є S with the property e * x = x * e = x for every x є S

BASIC IDENTITIES OF BOOLEAN ALGEBRA
• Postulate 1(Definition): A Boolean algebra is a closed algebraic system containing a set K of

two or more elements and the two operators · and + which refer to logical AND and logical

OR •x + 0 = x

10

• x · 0 = 0

• x + 1 = 1

• x · 1 = 1

• x + x = x

• x · x = x

• x + x’ = x

• x · x’ = 0

• x + y = y + x

• xy = yx

• x + (y + z) = (x + y) + z

• x (yz) = (xy) z

• x (y + z) = xy + xz

• x + yz = (x + y)(x + z)

• (x + y)’ = x’ y’

• (xy)’ = x’ + y’

• (x’)’ = x

DeMorgan's Theorem
(a) (a + b)' = a'b'
(b) (ab)' = a' + b'
Generalized DeMorgan's

Theorem (a) (a + b + … z)'

= a'b'… z'

(b) (a.b … z)' = a' + b' + … z‘

LOGIC GATES

Formal logic: In formal logic, a statement (proposition) is a declarative sentence that is either true(1)

or false (0). It is easier to communicate with computers using formal logic.

11

• Boolean variable: Takes only two values – either true (1) or false (0). They are used as basic
units of formal logic.

• Boolean algebra: Deals with binary variables and logic operations operating on those variables.

• Logic diagram: Composed of graphic symbols for logic gates. A simple circuit sketch that

represents inputs and outputs of Boolean functions.

Minimization of switching functions is to obtain logic circuits with least circuit complexity.

This goal is very difficult since how a minimal function relates to the implementation technology is

12

important. For example, If we are building a logic circuit that uses discrete logic made of small scale

Integration ICs(SSIs) like 7400 series, in which basic building block are constructed and are

available for use. The goal of minimization would be to reduce the number of ICs and not the logic

gates. For example, If we require two 6 and gates and 5 Or gates,we would require 2 AND ICs(each

has 4 AND gates) and one OR IC. (4 gates). On the other hand if the same logic could be

implemented with only 10 nand gates, we require only 3 ICs. Similarly when we design logic on

Programmable device, we may implement the design with certain number of gates and remaining

gates may not be used.

Whatever may be the criteria of minimization we would be guided by the following:

• Boolean algebra helps us simplify expressions and circuits

• Karnaugh Map: A graphical technique for simplifying a Boolean expression into either form:

o minimal sum of products (MSP) o

minimal product of

sums (MPS)

• Goal of the simplification.
o There are a minimal number of product/sum terms oEach term has a minimal number of

literals

• Circuit-wise, this leads to a minimal two-levelimplementation

• A two-variable function has four possible minterms. We can re-arrange these minterms into a
Karnaugh map

13

0 1
0 X

1

• Now we can easily see which minterms contain
common literals

– Minterms on the left and right sides contain y’ and y respectively

– Minterms in the top and bottom rows contain x’ and x respectively

Y

0 1
0

X
1

K- map Simplification

• Imagine a two-variable sum of minterms x’y’ + x’y

• Both of these minterms appear in the top row of a Karnaugh map, which means that they both
contain the literal x’

• What happens if you simplify this expression using Boolean algebra?

• x’y’ + x’y= x’(y’ + y) [Distributive]

= x’+1 [y + y’ = 1]

= x’ [x + 1 = x]
A Three-Variable Karnaugh Map

x Y
Minterm

0 0 x’y’
0 1 x’y

1 0 xy’

1 1 Xy

x’y’ x’y

xy’
xy

x’y’ x’y

xy’ xy

Y’ Y
X’ x’y’ x’y
X xy’ xy

Y

x’y’ x’y

X xy’ xy

14

K-maps From Truth Tables

15

Reading the MSP from the K-map

16

17

Grouping the Minterms Together

K-map Simplification of SoP Expressions

Unsimplifying Expressions

18

19

Four-variable K-maps – f(W,X,Y,Z)

Simplify m0+m2+m5+m8+m10+m13

20

PoS Optimization

21

PoS Optimization from SoP

SoP Optimization from PoS

22

Don’t care

23

K-map Summary

• K-maps are an alternative to algebra for simplifying expressions

– The result is a MSP/MPS, which leads to a minimal two-level circuit

– It’s easy to handle don’t-care conditions

– K-maps are really only good for manual simplification of small expressions...

– Things to keep in mind:

– Remember the correct order of minterms/maxterms on the K-map

– When grouping, you can wrap around all sides of the K-map, and your groups can
overlap

– Make as few rectangles as possible, but make each of them as large as possible. This
leads to fewer, but simpler, product terms

– There may be more than one valid solution
UNIT-III

DESIGN OF COMBINATIONAL CIRCUITS

Combinational Logic

• Logic circuits for digital systems may be combinational or sequential.

• A combinational circuit consists of input variables, logic gates, and output variables.

24

For n input variables,there are 2n possible combinations of binary input variables .For each
possible input Combination ,there is one and only one possible output combination.A
combinational circuit can be described by m Boolean functions one for each output
variables.Usually the input s comes from flip-flops and outputs goto flip-flops.

Design Procedure:

1. The problem is stated
2. The number of available input variables and required output variables is determined.
3. The input and output variables are assigned lettersymbols.
4. The truth table that defines the required relationship between inputs and outputs is derived.
5. The simplified Boolean function for each output is obtained.
6. The logic diagram is drawn.

Adders:

Digital computers perform variety of information processing tasks,the one is arithmetic
operations.And the most basic arithmetic operation is the addition of two binary digits.i.e, 4 basic
possible operations are:

0+0=0,0+1=1,1+0=1,1+1=10

The first three operations produce a sum whose length is one digit, but when augends and addend bits
are equal to 1,the binary sum consists of two digits.The higher significant bit of this result is called a
carry.A combinational circuit that performs the addition of two bits is called a half- adder. One that
performs the addition of 3 bits (two significant bits & previous carry) is called a full adder.& 2 half
adder can employ as a full-adder.

The Half Adder: A Half Adder is a combinational circuit with two binary inputs (augends and
addend bits and two binary outputs (sum and carry bits.) It adds the two inputs (A and B) and
produces the sum (S) and the carry (C) bits. It is an arithmetic operation of addition of two single
bit words.

25

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the sum (S) is the X-
OR of A and B (It represents the LSB of the sum). Therefore,

S=A’ +�B’

The carry (C) is the AND of A and B (it is 0 unless both the inputs are 1).Therefore,

C=AB

A half-adder can be realized by using one X-OR gate and one AND gate a

Logic diagrams of half-adder
NAND LOGIC:

NOR Logic:

26

The Full Adder:

A Full-adder is a combinational circuit that adds two bits and a carry and outputs a sum bit
and a carry bit. To add two binary numbers, each having two or more bits, the LSBs can be added
by using a half-adder. The carry resulted from the addition of the LSBs is carried over to the next
significant column and added to the two bits in that column. So, in the second and higher columns,
the two data bits of that column and the carry bit generated from the addition in the previous column
need to be added.

The full-adder adds the bits A and B and the carry from the previous column called the
carry-in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S
gives the value of the least significant bit of the sum. The variable Cout gives the output carry.The
eight rows under the input variables designate all possible combinations of 1s and 0s that these
variables may have. The 1s and 0s for the output variables are determined from the arithmetic sum
of the input bits. When all the bits are 0s , the output is 0. The S output is equal to 1 when only 1
input is equal to 1 or when all the inputs are equal to 1. The Cout has a carry of 1 if two or three
inputs are equal to 1.

From the truth table, a circuit that will produce the correct sum and carry bits in response to every
possible combination of A,B and Cin is described by

S ABCin ABCin ABCin ABCin

Cout ABCin ABCin ABCin ABCin

27

and

S A B Cin

Cout ACin BCin AB

The sum term of the full-adder is the X-OR of A,B, and Cin, i.e, the sum bit the modulo
sum of the data bits in that column and the carry from the previous column. The logic diagram of
the full-adder using two X-OR gates and two AND gates (i.e, Two half adders) and one OR gate is

Even though a full-adder can be constructed using two half-adders, the disadvantage is that the bits
must propagate through several gates in accession, which makes the total propagation delay greater
than that of the full-adder circuit using AOI logic.

The Full-adder neither can also be realized using universal logic, i.e., either only NAND gates or only
NOR gates as

NAND Logic:

28

NOR Logic:

Subtractors:

The subtraction of two binary numbers may be accomplished by taking the complement of
the subtrahend and adding it to the minuend. By this, the subtraction operation becomes an addition
operation and instead of having a separate circuit for subtraction, the adder itself can be used to

29

perform subtraction. This results in reduction of hardware. In subtraction, each subtrahend bit of
the number is subtracted from its corresponding significant minuend bit to form a difference bit. If
the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the next significant
position., that has been borrowed must be conveyed to the next higher pair of bits by means of a
signal coming out (output) of a given stage and going into (input) the next higher stage.

The Half-Subtractor:

A Half-subtractor is a combinational circuit that subtracts one bit from the other and produces
the difference. It also has an output to specify if a 1 has been borrowed. . It is used to subtract the
LSB of the subtrahend from the LSB of the minuend when one binary number is subtracted from
the other.

A Half-subtractor is a combinational circuit with two inputs A and B and two outputs d and b. d
indicates the difference and b is the output signal generated that informs the next stage that a 1 has
been borrowed. When a bit B is subtracted from another bit A, a difference bit (d) and a borrow
bit (b) result according to the rules given as

The output borrow b is a 0 as long as A≥B. It is a 1 for A=0 and B=1. The d output is the result of
the arithmetic operation 2b+A-B.

A circuit that produces the correct difference and borrow bits in response to every possible
combination of the two 1-bit numbers is , therefore ,

d=A + and b= B

That is, the difference bit is obtained by X-OR ing the two inputs, and the borrow bit is obtained
by ANDing the complement of the minuend with the subtrahend.Note that logic for this exactly
the same as the logic for output S in the half-adder.

A half-substractor can also be realized using universal logic either using only NAND gates or using
NOR gates as:

NAND Logic:

30

NOR Logic:

The Full-Subtractor:

The half-subtractor can be only for LSB subtraction. IF there is a borrow during the subtraction
of the LSBs, it affects the subtraction in the next higher column; the subtrahend bit is subtracted
from the minuend bit, considering the borrow from that column used for the subtraction in the
preceding column. Such a subtraction is performed by a full-subtractor. It subtracts one bit (B) from
another bit (A) , when already there is a borrow bi from this column for the subtraction in the
preceding column, and outputs the difference bit (d) and the borrow bit(b) required from the next d
and b. The two outputs present the difference and output borrow. The 1s and 0s for the output
variables are determined from the subtraction of A-B-bi.

31

From the truth table, a circuit that will produce the correct difference and borrow bits in response to
every possiblecombinations of A,B and bi is

A full-subtractor can be realized using X-OR gates and AOI gates as

The full subtractor can also be realized using universal logic either using only NAND gates or using
NOR gates as:

NAND Logic:

NOR Logic:

32

Binary Parallel Adder:

A binary parallel adder is a digital circuit that adds two binary numbers in parallel form and
produces the arithmetic sum of those numbers in parallel form. It consists of full adders connected
in a chain , with the output carry from each full-adder connected to the input carry of the next full-
adder in the chain.

The interconnection of four full-adder (FA) circuits to provide a 4-bit parallel adder. The
augends bits of A and addend bits of B are designated by subscript numbers from right to left, with
subscript 1 denoting the lower –order bit. The carries are connected in a chain through the
fulladders. The input carry to the adder is Cin and the output carry is C4. The S output generates
the required sum bits. When the 4-bit full-adder circuit is enclosed within an IC package, it has four
terminals for the augends bits, four terminals for the addend bits, four terminals for the sum bits,
and two terminals for the input and output carries. AN n-bit parallel adder requires n-full adders. It
can be constructed from 4-bit, 2-bit and 1-bit full adder ICs by cascading several packages. The
output carry from one package must be connected to the input carry of the one with the next higher
–order bits. The 4-bit full adder is a typical example of an MSI function.

Ripple carry adder:

In the parallel adder, the carry –out of each stage is connected to the carry-in of the

33

next stage. The sum and carry-out bits of any stage cannot be produced, until sometime after the carry-
in of that stage occurs. This is due to the propagation delays in the logic circuitry,
which lead to a time delay in the addition process. The carry propagation delay for each full- adder
is the time between the application of the carry-in and the occurrence of the carry-out.

The 4-bit parallel adder, the sum (S1) and carry-out (C1) bits given by FA1 are not valid, until after
the propagation delay of FA1. Similarly, the sum S2 and carry-out (C2) bits given by FA2 are not
valid until after the cumulative propagation delay of two full adders (FA1 and FA2) , and so on. At
each stage ,the sum bit is not valid until after the carry bits in all the preceding stages are valid.
Carry bits must propagate or ripple through all stages before the most significant sum bit is valid.
Thus, the total sum (the parallel output) is not valid until after the cumulative delay of all the adders.

The parallel adder in which the carry-out of each full-adder is the carry-in to the next most
significant adder is called a ripple carry adder.. The greater the number of bits that a ripple carry
adder must add, the greater the time required for it to perform a valid addition. If two numbers are
added such that no carries occur between stages, then the add time is simply the propagation time
through a single full-adder.

4- Bit Parallel Subtractor:

The subtraction of binary numbers can be carried out most conveniently by means of
complements , the subtraction A-B can be done by taking the 2‘s complement of B and adding
it to A . The 2‘s complement can be obtained by taking the 1‘s complement and adding 1 to the

least significant pair of bits. The 1‘s complement can be implemented with inverters as

Binary-Adder Subtractor:

A 4-bit adder-subtractor, the addition and subtraction operations are combined into
one circuit with one common binary adder. This is done by including an X-OR gate with each
fulladder. The mode input M controls the operation. When M=0, the circuit is an adder, and when
M=1, the circuit becomes a subtractor. Each X-OR gate receives input M and one of the inputs of
B. When M=0, .The full-adder receives the value of B , the input carry is 0
and the circuit performs A+B. when and C1=1. The B inputs are complemented and a 1
is through the input carry. The circuit performs the operation A plus the 2‘s complement of B.

34

The Look-Ahead –Carry Adder:

In parallel-adder,the speed with which an addition can be performed is governed by
the time required for the carries to propagate or ripple through all of the stages of the adder. The
look-ahead carry adder speeds up the process by eliminating this ripple carry delay. It examines all
the input bits simultaneously and also generates the carry-in bits for all the stages simultaneously.

The method of speeding up the addition process is based on the two additional
functions of the full-adder, called the carry generate and carry propagate functions.

Consider one full adder stage; say the nth stage of a parallel adder as shown in fig. we
know that is made by two half adders and that the half adder contains an X-OR gate to produce the
sum and an AND gate to produce the carry. If both the bits An and Bn are 1s, a carry has to be
generated in this stage regardless of whether the input carry Cin is a 0 or a 1. This is called generated
carry, expressed as Gn= An.Bn which has to appear at the output through the OR gate as shown in
fig.

Thereis another possibility of producing a carry out. X-OR gate inside the half-adder

at the input produces an intermediary sum bit- call it Pn –which is expressed as .
Next Pn and Cn are added using the X-OR gate inside the second half adder to produce the final

sum bit and and output carryC0= Pn.Cn=()Cnwhich becomes carry for the (n+1) th stage.

Consider the case of both Pn and Cn being 1. The input carry Cn has to be propagated
to the output only if Pn is 1. If Pn is 0, even if Cn is 1, the and gate in the second half-adder will
inhibit Cn . the carry out of the nth stage is 1 when either Gn=1 or Pn.Cn =1 or both Gn and Pn.Cn
are equal to 1.

For the final sum and carry outputs of the nth stage, we get the following Boolean
expressions.

35

Observe the recursive nature of the expression for the output carry
at the nth stage which becomes the input carry for the (n+1)st stage .it is possible to express the output
carry of a higher significant stage is the carry-out of the previous stage.

Based on these , the expression for the carry-outs of various full adders are as follows,

Observe that the final output carry is expressed as a function of the
input variables in SOP form. Which is two level AND-OR or equivalent NAND-NAND form.
Observe that the full look-ahead scheme requires the use of OR gate with (n+1) inputs and AND
gates with number of inputs varying from 2 to (n+1).

2’s complement Addition and Subtraction using Parallel Adders:

Most modern computers use the 2‘s complement system to represent negative numbers and
to perform subtraction operations of signed numbers can be performed using only the addition
operation ,if we use the 2‘s complement form to represent negative numbers.

The circuit shown can perform both addition and subtraction in the 2‘s complement. This
adder/subtractor circuit is controlled by the control signal ADD/SUB‘. When the ADD/SUB‘ level
is HIGH, the circuit performs the addition of the numbers stored in registers A and B. When the

36

ADD/Sub‘ level is LOW, the circuit subtract the number in register B from the number in register
A. The operation is:

When ADD/SUB‘ is a 1:

1. AND gates 1,3,5 and 7 are enabled , allowing B0,B1,B2and B3 to pass to the OR gates
9,10,11,12 . AND gates 2,4,6 and 8 are disabled , blocking B0‘,B1‘,B2‘, and B3‘ from
reaching the OR gates 9,10,11 and 12.

2. The two levels B0 to B3 pass through the OR gates to the 4-bit parallel adder, to be added to
the bits A0 to A3. The sum appears at the output S0 to S3

3. Add/SUB‘ =1 causes no carry into the adder.

When ADD/SUB‘ is a 0:

1. AND gates 1,3,5 and 7 are disabled , allowing B0,B1,B2and B3 from reaching the OR gates
9,10,11,12 . AND gates 2,4,6 and 8 are enabled , blocking B0‘,B1‘,B2‘, and B3‘ from
reaching the OR gates.

2. The two levels B0‘ to B3‘ pass through the OR gates to the 4-bit parallel adder, to be added
to the bits A0 to A3.The C0 is now 1.thus the number in register B is converted to its 2‘s
complement form.

3. The difference appears at the output S0 to S3.

Adders/Subtractors used for adding and subtracting signed binary numbers. In computers , the
output is transferred into the register A (accumulator) so that the result of the addition or subtraction
always end up stored in the register A This is accomplished by applying a transfer pulse to the CLK
inputs of register A.

Serial Adder:

A serial adder is used to add binary numbers in serial form. The two binary numbers to be
added serially are stored in two shift registers A and B. Bits are added one pair at a time through a
single full adder (FA) circuit as shown. The carry out of the full-adder is transferred to a D flip-
flop. The output of this flip-flop is then used as the carry input for the next pair of significant bits.
The sum bit from the S output of the full-adder could be transferred to a third shift register. By

37

shifting the sum into A while the bits of A are shifted out, it is possible to use one register for storing
both augend and the sum bits. The serial input register B can be used to transfer a new binary
number while the addend bits are shifted out during the addition.

The operation of the serial adder is:

Initially register A holds the augend, register B holds the addend and the carry flip-flop is
cleared to 0. The outputs (SO) of A and B provide a pair of significant bits for the full-adder at x
and y. The shift control enables both registers and carry flip-flop , so, at the clock pulse both
registers are shifted once to the right, the sum bit from S enters the left most flip-flop of A , and the
output carry is transferred into flip-flop Q . The shift control enables the registers for a number of
clock pulses equal to the number of bits of the registers. For each succeeding clock pulse a new
sum bit is transferred to A, a new carry is transferred to Q, and both registers are shifted once to the
right. This process continues until the shift control is disabled. Thus the addition is accomplished
by passing each pair of bits together with the previous carry through a single full adder circuit and
transferring the sum, one bit at a time, into register A.

Initially, register A and the carry flip-flop are cleared to 0 and then the first number is added
from B. While B is shifted through the full adder, a second number is transferred to it through its
serial input. The second number is then added to the content of register A while a third number is
transferred serially into register B. This can be repeated to form the addition of two, three, or more
numbers and accumulate their sum in register A.

Difference between Serial and Parallel Adders:

The parallel adder registers with parallel load, whereas the serial adder uses shift registers.
The number of full adder circuits in the parallel adder is equal to the number of bits in the binary
numbers, whereas the serial adder requires only one full adder circuit and a carry flip- flop.
Excluding the registers, the parallel adder is a combinational circuit, whereas the serial adder is a
sequential circuit. The sequential circuit in the serial adder consists of a full-adder and a flip-flop
that stores the output carry.

BCD Adder:

The BCD addition process:

1. Add the 4-bit BCD code groups for each decimal digit position using ordinary binary
addition.

2. For those positions where the sum is 9 or less, the sum is in proper BCD form and no
correction is needed.

38

3. When the sum of two digits is greater than 9, a correction of 0110 should be added to that
sum, to produce the proper BCD result. This will produce a carry to be added to the next
decimalposition.

A BCD adder circuit must be able to operate in accordance with the above steps. In other words, the
circuit must be able to do the following:

1. Add two 4-bit BCD code groups, using straight binaryaddition.
2. Determine, if the sum of this addition is greater than 1101 (decimal 9); if it is , add 0110

(decimal 6) to this sum and generate a carry to the next decimalposition.

The first requirement is easily met by using a 4- bit binary parallel adder such as the 74LS83
IC .For example , if the two BCD code groups A3A2A1A0and B3B2B1B0 are applied to a 4-bit
parallel adder, the adder will output S4S3S2S1S0 , where S4 is actually C4 , the carry –out of the
MSB bits.

The sum outputs S4S3S2S1S0 can range anywhere from 00000 to 100109when both the
BCD code groups are 1001=9). The circuitry for a BCD adder must include the logic needed to
detect whenever the sum is greater than 01001, so that the correction can be added in. Those cases
, where the sum is greater than 1001 are listed as:

Let us define a logic output X that will go HIGH only when the sum is greater than 01001 (i.e,
for the cases in table). If examine these cases ,see that X will be HIGH for either of the following
conditions:

1. Whenever S4 =1(sum greater than 15)

2. Whenever S3 =1 and either S2 or S1 or both are 1 (sum 10 to

15) This condition can be expressed as

X=S4+S3(S2+S1)

Whenever X=1, it is necessary to add the correction factor 0110 to the sum bits, and to
generate a carry. The circuit consists of three basic parts. The two BCD code groups A3A2A1A0
and B3B2B1B0 are added together in the upper 4-bit adder, to produce the sum S4S3S2S1S0. The
logic gates shown implement the expression for X. The lower 4-bit adder will add the correction
0110 to the sum bits, only when X=1, producing the final BCD sum output represented by
∑3∑2∑1∑0. The X is also the carry-out that is produced when the sum is greater than 01001. When
X=0, there is no carry and no addition of 0110. In such cases, ∑3∑2∑1∑0= S3S2S1S0.

39

Two or more BCD adders can be connected in cascade when two or more digit decimal
numbers are to be added. The carry-out of the first BCD adder is connected as the carry-in of the
second BCD adder, the carry-out of the second BCD adder is connected as the carry-in of the third
BCD adder and so on.

EXCESS-3 (XS-3) ADDER:

To perform Excess-3 additions,
1. Add two xs-3 code groups
2. If carry=1, add 0011(3) to the sum of those two codegroups

If carry =0, subtract 0011(3) i.e., add 1101 (13 in decimal) to the sum of those two code
groups. Ex: Add 9 and 5

1100 9 in Xs-3

1

+1000
_ _
0100

5 in xs-3

there is a carry
+0011 0011 add 3 to each group

0100 0111 14 in xs-3
(1) (4)

EX:

Implementation of xs-3 adder using 4-bit binary adders is shown. The augend (A3
A2A1A0) and addend (B3B2B1B0) in xs-3 are added using the 4-bit parallel adder. If the carry is
a 1, then 0011(3) is added to the sum bits S3S2S1S0 of the upper adder in the lower 4-bit parallel
adder. If the carry is a 0, then 1101(3) is added to the sum bits (This is equivalent to subtracting
0011(3) from the sum bits. The correct sum in xs-3 is obtained

Excess-3 (XS-3) Subtractor:

40

To perform Excess-3 subtraction,
1. Complement the subtrahend
2. Add the complemented subtrahend to theminuend.
3. If carry =1, result is positive. Add 3 and end around carry to the result . If carry=0, the

result is negative. Subtract 3, i.e, and take the 1‘s complement of the result.

Ex: Perform 9-4
1100 9 in xs-3

+1000 Complement of 4 n Xs-3

(1) 0100 There is a carry
+0011 Add 0011(3)

0111
1 End around carry

1000 5 in xs-3

The minuend and the 1‘s complement of the subtrahend in xs-3 are added in the upper 4-
bit parallel adder. If the carry-out from the upper adder is a 0, then 1101 is added to the sum bits of
the upper adder in the lower adder and the sum bits of the lower adder are complemented to get the
result. If the carry-out from the upper adder is a 1, then 3=0011 is added to the sum bits of the
lower adder and the sum bits of the lower adder give the result.

Binary Multipliers:

In binary multiplication by the paper and pencil method, is modified somewhat in digital
machines because a binary adder can add only two binary numbers at a time.

In a binary multiplier, instead of adding all the partial products at the end, they are added two
at a time and their sum accumulated in a register (the accumulator register). In addition, when the
multiplier bit is a 0,0s are not written down and added because it does not affect the final result.
Instead, the multiplicand is shifted left by one bit.

The multiplication of 1110 by 1001 using this process is
Multiplicand 1110
Multiplier 1001

1110 The LSB of the multiplier is a 1; write down the multiplicand; shift the
multiplicand one position to the left (1 1 1 0 0)

1110 The second multiplier bit is a 0; write down the previous result 1110;
shift the multiplicand to the left again (1 1 1 0 0 0)

+1110000 The fourth multiplier bit is a 1 write down the new
multiplicand add it to the first partial product to obtain the final
product.

1111110
This multiplication process can be performed by the serial multiplier circuit , which

multiplies two 4-bit numbers to produce an 8-bit product. The circuit consists of following elements
X register: A 4-bit shift register that stores the multiplier --- it will shift right on the falling edge of
the clock. Note that 0s are shifted in from the left.

41

B register: An 8-bit register that stores the multiplicand; it will shift left on the falling edge of the
clock. Note that 0s are shifted in from the right.

A register: An 8-bit register, i.e, the accumulator that accumulates the partial products.

Adder:An 8-bit parallel adder that produces the sum of A and B registers. The adder outputs S7
through S0 are connected to the D inputs of the accumulator so that the sum can be transferred
to the accumulator only when a clock pulse gets through the AND gate.
The circuit operation can be described by going through each step in the multiplication of 1110 by
1001. The complete process requires 4 clock cycles.

1. Before the first clock pulse: Prior to the occurrence of the first clock pulse, the register A is
loaded with 00000000, the register B with the multiplicand 00001110, and the register X with
the multiplier 1001. Assume that each of these registers is loaded using its asynchronous
inputs(i.e., PRESET and CLEAR). The output of the adder will be the sum of A and B,i.e.,
00001110.

2. First Clock pulse:Since the LSB of the multiplier (X0) is a 1, the first clock pulse gets through
the AND gate and its positive going transition transfers the sum outputs into the accumulator.
The subsequent negative going transition causes the X and B registers to shift right and left,
respectively. This produces a new sum of A and B.

3. Second Clock Pulse: The second bit of the original multiplier is now in X0 . Since this bit is a
0, the second clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are not
transferred into the accumulator and the number in the accumulator does not change. The negative
going transition of the clock pulse will again shift the X and B registers. Again a new sum is
produced.
4. Third Clock Pulse:The third bit of the original multiplier is now in X0;since this bit is a 0, the
third clock pulse is inhibited from reaching the accumulator. Thus, the sum outputs are not
transferred into the accumulator and the number in the accumulator does not change. The
negative going transition of the clock pulse will again shift the X and B registers. Again a new
sum is produced.

5. Fourth Clock Pulse: The last bit of the original multiplier is now in X0 , and since it is a 1, the
positive going transition of the fourth pulse transfers the sum into the accumulator. The
accumulator now holds the final product. The negative going transition of the clock pulse shifts
X and B again. Note that, X is now 0000, since all the multiplier bits have been shifted out.

Code converters:

The availability of a large variety of codes for the same discrete elements of information results
in the use of different codes by different digital systems. It is sometimes necessary to use the output
of one system as the input to another. A conversion circuit must be inserted between the two systems
if each uses different codes for the same information. Thus a code converter is a logic circuit whose
inputs are bit patterns representing numbers (or character) in one cod and whose outputs are the
corresponding representation in a different code. Code converters are usually multiple output
circuits.

To convert from binary code A to binary code B, the input lines must supply the bit combination
of elements as specified by code A and the output lines must generate the corresponding bit
combination of code B. A combinational circuit performs this transformation by means of logic
gates.

42

For example, a binary –to-gray code converter has four binary input lines B4, B3,B2,B1 and
four gray code output lines G4,G3,G2,G1. When the input is 0010, for instance, the output should
be 0011 and so forth. To design a code converter, we use a code table treating it as a truth table to
express each output as a Boolean algebraic function of all the inputs.
In this example, of binary –to-gray code conversion, we can treat the binary to the gray code table
as four truth tables to derive expressions for G4, G3, G2, and G1. Each of these four expressions
would, in general, contain all the four input variables B4, B3,B2,and B1. Thus,this code converter
is actually equivalent to four logic circuits, one for each of the truth tables.

The logic expression derived for the code converter can be simplified using the usual techniques,
including ‗don‘t cares‘ if present. Even if the input is an unweighted code, the same cell numbering
method which we used earlier can be used, but the cell numbers --must correspond to the input
combinations as if they were an 8-4-2-1 weighted code.

Design of a 4-bit binary to gray code converter:

Design of a 4-bit gray to Binary code converter:

43

44

Design of a 4-bit BCD to XS-3 code converter:

Design of a BCD to gray code converter:

45

Design of a SOP circuit to Detect the Decimal numbers 5 through 12 in a 4-bit gray code Input:

Design of a SOP circuit to detect the decimal numbers 0,2,4,6,8 in a 4-bit 5211 BCD code
input:

46

Design of a Combinational circuit to produce the 2’s complement of a 4-bit binary number:

Comparators:

47

48

1. Magnitude Comparator:

1- bit Magnitude Comparator:

4- Bit Magnitude Comparator:

49

50

IC Comparator:

ENCODERS:

Octal to Binary Encoder:

51

Decimal to BCD Encoder:

Tristate bus system:

In digital electronics three-state, tri-state, or 3-statelogic allows an output port to assume a high
impedance state in addition to the 0 and 1 logic levels, effectively removing the output from the circuit. This
allows multiple circuits to share the same output line or lines (such as a bus which cannot listen to more
than one device at a time).

Three-state outputs are implemented in many registers, bus drivers, and flip-flops in the 7400 and 4000
series as well as in other types, but also internally in many integrated circuits. Other typical uses are internal
and external buses in microprocessors, computer memory, and peripherals. Many devices are controlled by
an active-low input called OE (Output Enable) which dictates whether the outputs should be held in a
highimpedance state or drive their respective loads (to either 0- or 1-level).

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/High_impedance
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Computer_bus
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Flip-flop_%28electronics%29
https://en.wikipedia.org/wiki/7400_series
https://en.wikipedia.org/wiki/4000_series
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Active-low

52

53

UNIT-IV

SEQUENTIALCIRCUITS

Classification of sequential circuits: Sequential circuits may be classified as two types.

1. Synchronous sequentialcircuits
2. Asynchronous sequentialcircuits

Combinational logic refers to circuits whose output is strictly depended on the present value of
the inputs. As soon as inputs are changed, the information about the previous inputs is lost, that is,
combinational logics circuits have no memory. Although every digital system is likely to have
combinational circuits, most systems encountered in practice also include memory elements, which
require that the system be described in terms of sequential logic. Circuits whose output depends
not only on the present input value but also the past input value are known as sequential logic
circuits. The mathematical model of a sequential circuit is usually referred to as a sequential
machine.

Comparison between combinational and sequential circuits

Combinational circuit Sequential circuit

1. In combinational circuits, the
output variables at any instant of
time are dependent only on the
present input Variables

1. in sequential circuits the output variables at
any instant of time are dependent not only on
the present input variables, but also on the
present state

2.memory unit is not requires in
combinational circuit

2.memory unit is required to store the past
history of the input variables

3. these circuits are faster because
the delay between the i/p and o/p

3. sequential circuits are slower than
combinational circuits due to propagation
delay of gates only

54

4. easy to design 4. comparatively hard to design

Level mode and pulse mode asynchronous sequential circuits:

Fig shows a block diagram of an asynchronous sequential circuit. It consists of a combinational
circuit and delay elements connected to form the feedbackloops. The present state and next state
variables in asynchronous sequential circuits called secondary variables and excitation variables
respectively..

There are two types of asynchronous circuits: fundamental mode circuits and pulse mode circuits.

Synchronous and Asynchronous Operation:
Sequential circuits are divided into two main types: synchronous and asynchronous. Their

classification depends on the timing of their signals.Synchronous sequential circuits change their
states and output values at discrete instants of time, which are specified by the rising and falling
edge of a free-running clock signal. The clock signal is generally some form of square wave as
shown in Figure below.

From the diagram you can see that the clock period is the time between successive
transitions in the same direction, that is, between two rising or two falling edges. State transitions
in synchronous sequential circuits are made to take place at times when the clock is making a
transition from 0 to 1 (rising edge) or from 1 to 0 (falling edge). Between successive clock pulses
there is no change in the information stored in memory.

55

The reciprocal of the clock period is referred to as the clock frequency. The clock width
is defined as the time during which the value of the clock signal is equal to 1. The ratio of the clock
width and clock period is referred to as the duty cycle. A clock signal is said to be active high if
the state changes occur at the clock's rising edge or during the clock width. Otherwise, the clock is
said to be active low. Synchronous sequential circuits are also known as clocked sequential
circuits.

The memory elements used in synchronous sequential circuits are usually flip-flops. These
circuits are binary cells capable of storing one bit of information. A flip-flop circuit has two outputs,
one for the normal value and one for the complement value of the bit stored in it. Binary information
can enter a flip-flop in a variety of ways, a fact which give rise to the different types of flip-flops.
For information on the different types of basic flip-flop circuits and their logical properties, see the
previous tutorial on flip-flops.
In asynchronous sequential circuits, the transition from one state to another is initiated by the
change in the primary inputs; there is no external synchronization. The memory commonly used in
asynchronous sequential circuits are time-delayed devices, usually implemented by feedback
among logic gates. Thus, asynchronous sequential circuits may be regarded as combinational
circuits with feedback. Because of the feedback among logic gates, asynchronous sequential
circuits may, at times, become unstable due to transient conditions. The instability problem imposes
many difficulties on the designer. Hence, they are not as commonly used as synchronous systems.

Fundamental Mode Circuits assumes that:

1. The input variables change only when the circuit is stable
2. Only one input variable can change at a giventime
3. Inputs are levels are not pulses

A pulse mode circuit assumes that:

1. The input variables are pulses instead of levels
2. The width of the pulses is long enough for the circuit to respond to the input
3. The pulse width must not be so long that is still present after the new state is reached.

Latches and flip-flops

Latches and flip-flops are the basic elements for storing information. One latch or flip- flop
can store one bit of information. The main difference between latches and flip-flops is that for
latches, their outputs are constantly affected by their inputs as long as the enable signal is asserted.
In other words, when they are enabled, their content changes immediately when their inputs change.
Flip-flops, on the other hand, have their content change only either at the rising or falling edge of
the enable signal. This enable signal is usually the controlling clock signal. After the rising or falling
edge of the clock, the flip-flop content remains constant even if the input changes.

There are basically four main types of latches and flip-flops: SR, D, JK, and T. The major
differences in these flip-flop types are the number of inputs they have and how they change state.
For each type, there are also different variations that enhance their operations. In this chapter, we
will look at the operations of the various latches and flip-flops.the flip-flops has two outputs,
labeled Q and Q‘. the Q output is the normal output of the flip flop and Q‘ is the inverted output.

56

Figure: basic symbol of flipflop

A latch may be an active-high input latch or an active –LOW input latch.active –HIGH
means that the SET and RESET inputs are normally resting in the low state and one of them will
be pulsed high whenever we want to change latch outputs.

SR latch:

The latch has two outputs Q and Q‘. When the circuit is switched on the latch may enter into
any state. If Q=1, then Q‘=0, which is called SET state. If Q=0, then Q‘=1, which is called RESET
state. Whether the latch is in SET state or RESET state, it will continue to remain in the same state,
as long as the power is not switched off. But the latch is not an useful circuit, since there is no way
of entering the desired input. It is the fundamental building block in constructing flip-flops, as
explained in the following sections

NAND latch

NAND latch is the fundamental building block in constructing a flip-flop. It has the property
of holding on to any previous output, as long as it is not disturbed.

The opration of NAND latch is the reverse of the operation of NOR latch.if 0‘s are replaced
by 1‘s and 1‘s are replaced by 0‘s we get the same truth table as that of the NOR latch shown

NOR latch

The analysis of the operation of the active-HIGH NOR latch can be summarized as follows.

57

1. SET=0, RESET=0: this is normal resting state of the NOR latch and it has no effect on the
output state. Q and Q‘ will remain in whatever stste they were prior to the occurrence of this
input condition.

2. SET=1, RESET=0: this will always set Q=1, where it will remain even after SET returns to 0
3. SET=0, RESET=1: this will always reset Q=0, where it will remain even after RESET returns

to 0
4. SET=1,RESET=1; this condition tries to SET and RESET the latch at the same time, and it

produces Q=Q‘=0. If the inputs are returned to zero simultaneously, the resulting output stste
is erratic and unpredictable. This input condition should not be used.

The SET and RESET inputs are normally in the LOW state and one of them will be pulsed
HIGH. Whenever we want to change the latch outputs..

RS Flip-flop:

The basic flip-flop is a one bit memory cell that gives the fundamental idea of memory
device. It constructed using two NAND gates. The two NAND gates N1 andN2 are connected such
that, output of N1 is connected to input of N2 and output of N2 to input of N1. These form the
feedback path the inputs are S and R, and outputs are Q and Q‘. The logic diagram and the block
diagram of R-S flip-flop with clocked input

Figure: RS Flip-flop

The flip-flop can be made to respond only during the occurrence of clock pulse by adding
two NAND gates to the input latch. So synchronization is achieved. i.e., flip-flops are allowed
to change their states only at particular instant of time. The clock pulses are generated by a
clock pulse generator. The flip-flops are affected only with the arrival of clock pulse.

Operation:

1. When CP=0 the output of N3 and N4 are 1 regardless of the value of S and R. This is given
as input to N1 and N2. This makes the previous value of Q and Q‘unchanged.

2. When CP=1 the information at S and R inputs are allowed to reach the latch and change of
state in flip-flop takes place.

3. CP=1, S=1, R=0 gives the SET state i.e., Q=1, Q‘=0.

4. CP=1, S=0, R=1 gives the RESET state i.e., Q=0, Q‘=1.

5. CP=1, S=0, R=0 does not affect the state offlip-flop.
6. CP=1, S=1, R=1 is not allowed, because it is not able to determine the next state. This condit

ion is said to be a ―race condition.

58

In the logic symbol CP input is marked with a triangle. It indicates the circuit responds to
an input change from 0 to 1. The characteristic table gives the operation conditions of flip-flop.
Q(t) is the present state maintained in the flip-flop at time ‗t‘. Q(t+1) is the state after the occurrence
of clock pulse.

Edge triggered RS flip-flop:

Some flip-flops have an RC circuit at the input next to the clock pulse. By the design of the
circuit the R-C time constant is much smaller than the width of the clock pulse. So the output
changes will occur only at specific level of clock pulse. The capacitor gets fully charged when clock
pulse goes from low to high. This change produces a narrow positive spike. Later at the trailing
edge it produces narrow negative spike. This operation is called edge triggering, as the flip-flop
responds only at the changing state of clock pulse. If output transition occurs at rising edge of clock
pulse (0 1),it is called positively edge triggering. If it occurs at trailing edge (1 0) it is called
negative edge triggering. Figure shows the logic and block diagram.

Figure: Edge triggered RS flip-flop D

flip-flop:

The D flip-flop is the modified form of R-S flip-flop. R-S flip-flop is converted to D flip-flop by
adding an inverter between S and R and only one input D is taken instead of S and R. So one input
is D and complement of D is given as another input. The logic diagram and the block diagram of
D flip-flop with clocked input

59

When the clock is low both the NAND gates (N1 and N2) are disabled and Q retains its last
value. When clock is high both the gates are enabled and the input value at D is transferred to its
output Q. D flip-flop is also called ―Data flip-flop‖.

Edge Triggered D Flip-flop:

Figure: truth table, block diagram, logic diagram of edge triggered flip-flop

JK flip-flop (edge triggered JK flip-flop)

The race condition in RS flip-flop, when R=S=1 is eliminated in J-K flip-flop. There is a
feedback from the output to the inputs. Figure 3.4 represents one way of building a JK flip-flop.

60

JK flip-flop operation

Figure: JK flip-flop

The J and K are called control inputs, because they determine what the flip-flop does when
a positive clock edge arrives.

Operation:

1. When J=0, K=0 then both N3 and N4 will produce high output and the previous value of Q
and Q‘ retained as it is.

2. When J=0, K=1, N3 will get an output as 1 and output of N4 depends on the value of Q. The
final output is Q=0, Q‘=1 i.e., reset state

3. When J=1, K=0 the output of N4 is 1 and N3 depends on the value of Q‘. The final output is
Q=1 and Q‘=0 i.e., set state

4. When J=1, K=1 it is possible to set (or) reset the flip-flop depending on the current state of
output. If Q=1, Q‘=0 then N4 passes ‘0‘to N2 which produces Q‘=1, Q=0 which is reset state.
When J=1, K=1, Q changes to the complement of the last state. The flip-flop is said to be in
the toggle state.

The characteristic equation of the JK flip-flop is:

61

Characteristic table Excitation table

J K Qnext Comment Q Qnext J K Comment

0

0

0

1

Q

0

hold state

reset

0

0

0

1

0

1

X

X

No change

Set

1 0 1 set 1 0 X 1 Reset

1 1 Q toggle 1 1 X 0 No change

T flip-flop:

If the T input is high, the T flip-flop changes state ("toggles") whenever the clock input is strobed.
If the T input is low, the flip-flop holds the previous value. This behavior is described by the
characteristic equation

Figure : symbol for T flip flop

(expanding the XOR operator)

When T is held high, the toggle flip-flop divides the clock frequency by two; that is, if clock
frequency is 4 MHz, the output frequency obtained from the flip-flop will be 2 MHz This "divide
by" feature has application in various types of digital counters. A T flip-flop can also be built using
a JK flip-flop (J & K pins are connected together and act as T) or D flip-flop (T input and Previous is
connected to the D input through an XOR gate).

T flip-flop operation[28]

http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Excitation_table
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/XOR_gate
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Flip-flop_(electronics)

62

Characteristic table Excitation table

Comment Comment

0 0 0 hold state
(no clk)

0 0 0 No change

0 1 1 hold state
(no clk)

1 1 0 No change

1 0 1 Toggle 0 1 1 Complement

1 1 0 Toggle 1 0 1 Complement

Flip flop operating characteristics:

The operation characteristics specify the performance, operating requirements, and operating
limitations of the circuits. The operation characteristics mentions here apply to all flip- flops
regardless of the particular form of the circuit.

Propagation Delay Time: is the interval of time required after an input signal has been applied for
the resulting output change to occur.

Set-up Time: is the minimum interval required for the logic levels to be maintained constantly on
the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock pulse in order for the
levels to be reliably clocked into the flip-flop.

Hold Time: is the minimum interval required for the logic levels to remain on the inputs after the
triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip- flop.

Maximum Clock Frequency: is the highest rate that a flip-flop can be reliably triggered. Power

Dissipation: is the total power consumption of the device. It is equal to product of supply voltage
(Vcc) and the current (Icc).

P=Vcc.Icc
The power dissipation of a flip flop is usually in mW.

Pulse Widths: are the minimum pulse widths specified by the manufacturer for the Clock, SET
and CLEAR inputs.

http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Excitation_table

63

Clock transition times: for reliable triggering, the clock waveform transition times should be kept
very short. If the clock signal takes too long to make the transitions from one level to other, the flip
flop may either triggering erratically or not trigger at all. Race around Condition

The inherent difficulty of an S-R flip-flop (i.e., S = R = 1) is eliminated by using the
feedback connections from the outputs to the inputs of gate 1 and gate 2 as shown in Figure. Truth
tables in figure were formed with the assumption that the inputs do not change during the clock
pulse (CLK = 1). But the consideration is not true because of the feedback connections.

• Consider, for example, that the inputs are J = K = 1 and Q = 1, and a pulse as shown in
Figure is applied at the clock input.

• After a time interval t equal to the propagation delay through two NAND gates in series,
the outputs will change to Q = 0. So now we have J = K = 1 and Q = 0.

• After another time interval of t the output will change back to Q = 1. Hence, we conclude
that for the time duration of tP of the clock pulse, the output will oscillate between 0 and 1.
Hence, at the end of the clock pulse, the value of the output is not certain. This situation is
referred to as a race-around condition.

• Generally, the propagation delay of TTL gates is of the order of nanoseconds. So if
the clock pulse is of the order of microseconds, then the output will change thousands of
times within the clock pulse.

• This race-around condition can be avoided if tp< t < T. Due to the small propagation delay
of the ICs it may be difficult to satisfy the above condition.

• A more practical way to avoid the problem is to use the master-slave (M-S) configuration
as discussed below.

Applications of flip-flops:

Frequency Division: When a pulse waveform is applied to the clock input of a J-K flip-
flop that is connected to toggle, the Q output is a square wave with half the frequency of the clock
input. If more flip-flops are connected together as shown in the figure below, further division of the
clock frequency can be achieved

. Parallel data storage: a group of flip-flops is called register. To store data of N bits, N flip-flops
are required. Since the data is available in parallel form. When a clock pulse is applied to all flip-
flops simultaneously, these bits will transfer will be transferred to the Q outputs of the flip flops.

Serial data storage: to store data of N bits available in serial form, N number of D-flip-
flops is connected in cascade. The clock signal is connected to all the flip-flops. The serial data is
applied to the D input terminal of the first flip-flop.

64

Transfer of data: data stored in flip-flops may be transferred out in a serial fashion, i.e.,
bit-by-bit from the output of one flip-flops or may be transferred out in parallel form.

Excitation Tables:

Conversions of flip-flops:

65

The key here is to use the excitation table, which shows the necessary triggering signal
(S,R,J,K, D and T) for a desired flip-flop state transition :

Convert a D-FF to a T-FF:

We need to design the circuit to generate the triggering signal D as a function of T and Q: .
Consider the excitation table:

Treating as a function of and current FF state, we have

Convert a RS-FF to a D-FF:

66

We need to design the circuit to generate the triggering signals S and R as functions of
and consider the excitation table:

The desired signal and can be obtained as functions of and current FF state from the
Karnaugh maps:

Convert a RS-FF to a JK-FF:
We need to design the circuit to generate the triggering signals S and R as functions of, J,

K.
Consider the excitation table: The desired signal and as functions of, and current FF state can be
obtained from the Karnaugh maps:

67

K-maps:

The Master-Slave JK Flip-flop:

The Master-Slave Flip-Flop is basically two gated SR flip-flops connected together in a
series configuration with the slave having an inverted clock pulse. The outputs from Q and
Q from the "Slave" flip-flop are fed back to the inputs of the "Master" with the outputs of the
"Master" flip-flop being connected to the two inputs of the "Slave" flip-flop. This feedback
configuration from the slave's output to the master's input gives the characteristic toggle of the JK
flip-flop as shown below.

The input signals J and K are connected to the gated "master" SR flip-flop which "locks"
the input condition while the clock (Clk) input is "HIGH" at logic level "1". As the clock input of
the "slave" flip-flop is the inverse (complement) of the "master" clock input, the "slave" SR flip-
flop does not toggle. The outputs from the "master" flip-flop are only "seen" by the gated "slave"
flip-flop when the clock input goes "LOW" to logic level "0".When the clock is "LOW", the outputs
from the "master" flip-flop are latched and any additional changes to its inputs are ignored. The
gated "slave" flip-flop now responds to the state of its inputs passed over by the "master" section.
Then on the "Low-to-High" transition of the clock pulse the inputs of the "master" flipflop are fed
through to the gated inputs of the "slave" flip-flop and on the "High-to- Low" transition the same
inputs are reflected on the output of the "slave" making this type of flip-flop edge or pulse-triggered.
Then, the circuit accepts input data when the clock signal is "HIGH", and passes the data to the
output on the falling-edge of the clock signal. In other words, the Master-Slave JK Flip-flop is a
"Synchronous" device as it only passes data with the timing of the clock signal.

Sequential Circuit Design

68

• Steps in the design process for sequentialcircuits
• State Diagrams and State Tables Examples

• Steps in Design of a Sequential Circuit

1. Specification – A description of the sequential circuit. Should include a detailing of the inputs,
the outputs, and the operation. Possibly assumes that you have knowledge of digital system
basics.

2. Formulation: Generate a state diagram and/or a state table from the statement of the problem.
3. State Assignment: From a state table assign binary codes to the states.
4. Flip-flop Input Equation Generation: Select the type of flip-flop for the circuit and generate the

needed input for the required statetransitions
5. Output Equation Generation: Derive output logic equations for generation of the output from the

inputs and current state.
6. Optimization: Optimize the input and output equations. Today, CAD systems are typically used

for this in real systems.
7. Technology Mapping: Generate a logic diagram of the circuit using ANDs, ORs, Inverters, and

F/Fs.
8. Verification: Use a HDL to verify the design.

Shift registers:
In digital circuits, a shift register is a cascade of flip-flops sharing the same clock, in which

the output of each flip-flop is connected to the "data" input of the next flip-flop in the chain,
resulting in a circuit that shifts by one position the "bit array" stored in it, shifting in the data present
at its input and shifting out the last bit in the array, at each transition of the clock input. More
generally, a shift register may be multidimensional, such that its "data in" and stage outputs are
themselves bit arrays: this is implemented simply by running several shift registers of the same
bitlength in parallel.
Shift registers can have both parallel and serial inputs and outputs. These are often configured as
serial-in, parallel-out (SIPO) or as parallel-in, serial-out (PISO). There are also types that have
both serial and parallel input and types with serial and parallel output. There are also bi- directional
shift registers which allow shifting in both directions: L→R or R→L. The serial input and last
output of a shift register can also be connected to create a circular shift register

Shift registers are a type of logic circuits closely related to counters. They are basically for the
storage and transfer of digital data.

Buffer register:
The buffer register is the simple set of registers. It is simply stores the binary word. The buffer may
be controlled buffer. Most of the buffer registers used D Flip-flops.

69

Figure: logic diagram of 4-bit buffer register

The figure shows a 4-bit buffer register. The binary word to be stored is applied to the data
terminals. On the application of clock pulse, the output word becomes the same as the word applied
at the terminals. i.e., the input word is loaded into the register by the application of clock pulse.
When the positive clock edge arrives, the stored word becomes:

Q4Q3Q2Q1=X4X3X2X1

Q=X
Controlled buffer register:

If goes LOW, all the FFs are RESET and the output becomes, Q=0000.

When ��� is HIGH, the register is ready for action. LOAD is the control input. When LOAD is
HIGH, the data bits X can reach the D inputs of FF‘s.

Q4Q3Q2Q1=X4X3X2X1
Q=X

When load is low, the X bits cannot reach the FF‘s.

Data transmission in shift registers:

70

A number of ff‘s connected together such that data may be shifted into and shifted out of them is
called shift register. data may be shifted into or out of the register in serial form or in parallel form.
There are four basic types of shift registers.
1. Serial in, serial out, shift right, shift registers
2. Serial in, serial out, shift left, shift registers
3. Parallel in, serial out shift registers
4. Parallel in, parallel out shift registers

Serial IN, serial OUT, shift right, shift left register:

The logic diagram of 4-bit serial in serial out, right shift register with four stages. The register can
store four bits of data. Serial data is applied at the input D of the first FF. the Q output of the first
FF is connected to the D input of another FF. the data is outputted from the Q terminal of the last
FF.

When serial data is transferred into a register, each new bit is clocked into the first FF at the positive
going edge of each clock pulse. The bit that was previously stored by the first FF is transferred to
the second FF. the bit that was stored by the Second FF is transferred to the third FF.

Serial-in, parallel-out, shift register:

In this type of register, the data bits are entered into the register serially, but the data stored in the
register is shifted out in parallel form.

71

Once the data bits are stored, each bit appears on its respective output line and all bits are
available simultaneously, rather than on a bit-by-bit basis with the serial output. The serial-in,
parallel out, shift register can be used as serial-in, serial out, shift register if the output is taken from
the Q terminal of the last FF.

Parallel-in, serial-out, shift register:

For a parallel-in, serial out, shift register, the data bits are entered simultaneously into their
respective stages on parallel lines, rather than on a bit-by-bit basis on one line as with serial data
bits are transferred out of the register serially. On a bit-by-bit basis over a single line.

There are four data lines A,B,C,D through which the data is entered into the register in parallel
form. The signal shift/ load allows the data to be entered in parallel form into the register and the
data is shifted out serially from terminalQ4

Parallel-in, parallel-out, shift register

In a parallel-in, parallel-out shift register, the data is entered into the register in parallel form,
and also the data is taken out of the register in parallel form. Data is applied to the D input terminals
of the FF‘s. When a clock pulse is applied, at the positive going edge of the pulse, the D inputs are

72

shifted into the Q outputs of the FFs. The register now stores the data. The stored data is available
instantaneously for shifting out in parallel form.

Bidirectional shift register:

A bidirectional shift register is one which the data bits can be shifted from left to right or
from right to left. A fig shows the logic diagram of a 4-bit serial-in, serial out, bidirectional shift
register. Right/left is the mode signal, when right /left is a 1, the logic circuit works as a
shiftregister.the bidirectional operation is achieved by using the mode signal and two NAND gates
and one OR gate for each stage.

A HIGH on the right/left control input enables the AND gates G1, G2, G3 and G4 and
disables the AND gates G5,G6,G7 and G8, and the state of Q output of each FF is passed through
the gate to the D input of the following FF. when a clock pulse occurs, the data bits are then
effectively shifted one place to the right. A LOW on the right/left control inputs enables the AND
gates G5, G6, G7 and G8 and disables the And gates G1, G2, G3 and G4 and the Q output of each
FF is passed to the D input of the preceding FF. when a clock pulse occurs, the data bits are then
effectively shifted one place to the left. Hence, the circuit works as a bidirectional shift register

Figure: logic diagram of a 4-bit bidirectional shift register

Universal shift register:

A register is capable of shifting in one direction only is a unidirectional shift register. One that can
shift both directions is a bidirectional shift register. If the register has both shifts and parallel load
capabilities, it is referred to as a universal shift registers. Universal shift register is a bidirectional
register, whose input can be either in serial form or in parallel form and whose output also can be
in serial form or I parallel form.
The most general shift register has the following capabilities.

1. A clear control to clear the register to 0
2. A clock input to synchronize theoperations

73

mode control

3. A shift-right control to enable the shift-right operation and serial input and output lines
associated with the shift-right. A shift-left control to enable the shift-left operation and
serial input and output lines associated with theshift-left

4. A parallel loads control to enable a parallel transfer and the n input lines associated with
the parallel transfer

5. N parallel output lines
6. A control state that leaves the information in the register unchanged in the presence of the

clock.

A universal shift register can be realized using multiplexers. The below fig shows the logic
diagram of a 4-bit universal shift register that has all capabilities. It consists of 4 D flip-flops and
four multiplexers. The four multiplexers have two common selection inputs s1 and s0. Input 0 in
each multiplexer is selected when S1S0=00, input 1 is selected when S1S0=01 and input 2 is
selected when S1S0=10 and input 4 is selected when S1S0=11. The selection inputs control the
mode of operation of the register according to the functions entries. When S1S0=0, the present
value of the register is applied to the D inputs of flip-flops. The condition forms a path from the
output of each flip-flop into the input of the same flip-flop. The next clock edge transfers into each
flip-flop the binary value it held previously, and no change of state occurs. When S1S0=01, terminal
1 of the multiplexer inputs have a path to the D inputs of the flip-flop. This causes a shiftright
operation, with serial input transferred into flip-flopA4. When S1S0=10, a shift left operation
results with the other serial input going into flip-flop A1. Finally when S1S0=11, the binary
information on the parallel input lines is transferred into the register simultaneously during the
next clock cycle

Figure: logic diagram 4-bit universal shift register
Function table for theregister

74

S0 S1 register operation

0 0 No change

0 1 Shift Right

1 0 Shift left

1 1 Parallel load

Counters:

Counter is a device which stores (and sometimes displays) the number of times particular
event or process has occurred, often in relationship to a clock signal. A Digital counter is a set of
flip flops whose state change in response to pulses applied at the input to the counter. Counters may
be asynchronous counters or synchronous counters. Asynchronous counters are also called ripple
counters
In electronics counters can be implemented quite easily using register-type circuits such as the
flip-flops and a wide variety of classifications exist:

• Asynchronous (ripple) counter – changing state bits are used as clocks to subsequent state flip-
flops

• Synchronous counter – all state bits change under control of a single clock

• Decade counter – counts through ten states per stage

• Up/down counter – counts both up and down, under command of a control input

• Ring counter – formed by a shift register with feedback connection in a ring

• Johnson counter – a twisted ring counter Cascaded counter Modulus counter.

Each is useful for different applications. Usually, counter circuits are digital in nature, and count in
natural binary Many types of counter circuits are available as digital building blocks, for example
a number of chips in the 4000 series implement different counters.
Occasionally there are advantages to using a counting sequence other than the natural binary
sequence such as the binary coded decimal counter, a linear feed-back shift register counter, or a
gray-code counter.
Counters are useful for digital clocks and timers, and in oven timers, VCR clocks, etc.
Asynchronous counters:

An asynchronous (ripple) counter is a single JK-type flip-flop, with its J (data) input fed
from its own inverted output. This circuit can store one bit, and hence can count from zero to one
before it overflows (starts over from 0). This counter will increment once for every clock cycle and
takes two clock cycles to overflow, so every cycle it will alternate between a transition from 0 to 1
and a transition from 1 to 0. Notice that this creates a new clock with a 50% duty cycle at exactly
half the frequency of the input clock. If this output is then used as the clock signal for a similarly

http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Duty_cycle
http://en.wikipedia.org/wiki/Duty_cycle

75

arranged D flip-flop (remembering to invert the output to the input), one will get another 1 bit
counter that counts half as fast. Putting them together yields a two-bit counter:

Two-bit ripple up-counter using negative edge triggered flip flop:

Two bit ripple counter used two flip-flops. There are four possible states from 2 – bit up- counting
I.e. 00, 01, 10 and 11.

· The counter is initially assumed to be at a state 00 where the outputs of the tow flip-flops are
noted as Q1Q0.Where Q1 forms the MSB and Q0 forms the LSB.

· For the negative edge of the first clock pulse, output of the first flip-flop FF1 toggles its state. Thus
Q1 remains at 0 and Q0 toggles to 1 and the counter state are now read as 01.

· During the next negative edge of the input clock pulse FF1 toggles and Q0 = 0. The output Q0
being a clock signal for the second flip-flop FF2 and the present transition acts as a negative edge
for FF2 thus toggles its state Q1 = 1. The counter state is now read as 10.

· For the next negative edge of the input clock to FF1 output Q0 toggles to 1. But this transition
from 0 to 1 being a positive edge for FF2 output Q1 remains at 1. The counter state is now read as
11.

· For the next negative edge of the input clock, Q0 toggles to 0. This transition from 1 to 0 acts as a
negative edge clock for FF2 and its output Q1 toggles to 0. Thus the starting state 00 is attained.
Figure shown below

Two-bit ripple down-counter using negative edge triggered flip flop:

76

A 2-bit down-counter counts in the order 0,3,2,1,0,1…….,i.e, 00,11,10,01,00,11 …..,etc. the
above fig. shows ripple down counter, using negative edge triggered J-K FFs and its timing
diagram.

• For down counting, Q1‘ of FF1 is connected to the clock of Ff2. Let initially all the FF1
toggles, so, Q1 goes from a 0 to a 1 and Q1‘ goes from a 1 to a 0.

• The negative-going signal at Q1‘ is applied to the clock input of FF2, toggles Ff2 and,
therefore, Q2 goes from a 0 to a 1.so, after one clock pulse Q2=1 and Q1=1, I.e., the state
of the counter is 11.

• At the negative-going edge of the second clock pulse, Q1 changes from a 1 to a 0 and
Q1‘from a 0 to a 1.

• This positive-going signal at Q1‘ does not affect FF2 and, therefore, Q2 remains at a 1.
Hence , the state of the counter after second clock pulse is 10

• At the negative going edge of the third clock pulse, FF1 toggles. So Q1, goes from a 0 to a
1 and Q1‘ from 1 to 0. This negative going signal at Q1‘ toggles FF2 and, so, Q2 changes
from 1 to 0, hence, the state of the counter after the third clock pulse is01.

• At the negative going edge of the fourth clock pulse, FF1 toggles. So Q1, goes from a 1 to
a 0 and Q1‘ from 0 to 1. . This positive going signal at Q1‘ does not affect FF2 and, so, Q2
remains at 0, hence, the state of the counter after the fourth clock pulse is 00.

Two-bit ripple up-down counter using negative edge triggered flip flop:

77

Figure: asynchronous 2-bit ripple up-down counter using negative edge triggered flip flop

• As the name indicates an up-down counter is a counter which can count both in upward and
downward directions. An up-down counter is also called a forward/backward counter or a
bidirectional counter. So, a control signal or a mode signal M is required to choose the
direction of count. When M=1 for up counting, Q1 is transmitted to clock of FF2 and when
M=0 for down counting, Q1‘ is transmitted to clock of FF2. This is achieved by using two
AND gates and one OR gates. The external clock signal is applied toFF1.

• Clock signal to FF2= (Q1.Up)+(Q1‘. Down)= Q1m+Q1‘M‘

Design of Asynchronous counters:

To design a asynchronous counter, first we write the sequence , then tabulate the values of
reset signal R for various states of the counter and obtain the minimal expression for R and R‘ using
K-Map or any other method. Provide a feedback such that R and R‘ resets all the FF‘s after the
desired count
Design of a Mod-6 asynchronous counter using T FFs:

A mod-6 counter has six stable states 000, 001, 010, 011, 100, and 101. When the sixth clock
pulse is applied, the counter temporarily goes to 110 state, but immediately resets to 000 because
of the feedback provided. it is ―divide by-6-counter‖, in the sense that it divides the input
clock frequency by 6.it requires three FFs, because the smallest value of n satisfying the
conditionN≤2n is n=3; three FFs can have 8 possible states, out of which only six are utilized and
the remaining two states 110and 111, are invalid. If initially the counter is in 000 state, then after
the sixth clock pulse, it goes to 001, after the second clock pulse, it goes to 010, and so on.

78

After sixth clock pulse it goes to 000. For the design, write the truth table with present state outputs
Q3, Q2 and Q1 as the variables, and reset R as the output and obtain an expression for R in terms
of Q3, Q2, and Q1that decides the feedback into be provided. From the truth table, R=Q3Q2. For
active-low Reset, R‘ is used. The reset pulse is of very short duration, of the order of nanoseconds
and it is equal to the propagation delay time of the NAND gate used. The expression for R can also
be determined as follows.

R=0 for 000 to 101, R=1 for 110, and R=X=for111
Therefore,

R=Q3Q2Q1‘+Q3Q2Q1=Q3Q2

The logic diagram and timing diagram of Mod-6 counter is shown in the above fig.

The truth table is as shown in below.

Design of a mod-10 asynchronous counter using T-flip-flops:

A mod-10 counter is a decade counter. It also called a BCD counter or a divide-by-10
counter. It requires four flip-flops (condition 10 ≤2n is n=4). So, there are 16 possible states, out of
which ten are valid and remaining six are invalid. The counter has ten stable state, 0000 through

After
pulses

States
Q3 Q2 Q1 R

0 0 0 0 0
1 0 0 1 0
2 0 1 0 0
3 0 1 1 0
4 1 0 0 0
5 1 0 1 0
6 1 1 0 1

0 0 0 0
7 0 0 0 0

79

1001, i.e., it counts from 0 to 9. The initial state is 0000 and after nine clock pulses it goes to
1001. When the tenth clock pulse is applied, the counter goes to state 1010 temporarily, but
because of the feedback provided, it resets to initial state 0000. So, there will be a glitch in the
waveform of Q2. The state 1010 is a temporary state for which the reset signal R=1, R=0 for 0000
to 1001, and R=C for 1011 to 1111.

The count table and the K-Map for reset are shown in fig. from the K-Map R=Q4Q2. So,
feedback is provided from second and fourth FFs. For
active –HIGH reset, Q4Q2 is applied to the clear terminal.
For active-LOW reset 4 2 is connected isof all
Flip=flops.

Synchronous counters:

Asynchronous counters are serial counters. They are slow because each FF can change state
only if all the preceding FFs have changed their state. if the clock frequency is very high, the
asynchronous counter may skip some of the states. This problem is overcome in synchronous
counters or parallel counters. Synchronous counters are counters in which all the flip flops are
triggered simultaneously by the clock pulses Synchronous counters have a common clock pul se
applied simultaneously to all flip-flops. A 2-Bit Synchronous Binary Counter

After
pulses Count Q3

Q4
Q2 Q1

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 0 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 0 1 0 1
10 0 0 0 0

80

Design of synchronous counters:

For a systematic design of synchronous counters. The following procedure is used.

Step 1:State Diagram: draw the state diagram showing all the possible states state diagram which
also be called nth transition diagrams, is a graphical means of depicting the sequence of states
through which the counter progresses.

Step2: number of flip-flops: based on the description of the problem, determine the required
number n of the flip-flops- the smallest value of n is such that the number of states N≤2n--- and the
desired counting sequence.

Step3: choice of flip-flops excitation table: select the type of flip-flop to be used and write the
excitation table. An excitation table is a table that lists the present state (ps) , the next state(ns) and
required excitations.
Step4: minimal expressions for excitations: obtain the minimal expressions for the excitations of
the FF using K-maps drawn for the excitation of the flip-flops in terms of the present states and
inputs.

Step5: logic diagram: draw a logic diagram based on the minimal expressions

Design of a synchronous 3-bit up-down counter using JK flip-flops:

Step1: determine the number of flip-flops required. A 3-bit counter requires three FFs. It has 8
states (000,001,010,011,101,110,111) and all the states are valid. Hence no don‘t cares. For
selecting up and down modes, a control or mode signal M is required. When the mode signal M=1
and counts down when M=0. The clock signal is applied to all the FFs simultaneously.

Step2: draw the state diagrams: the state diagram of the 3-bit up-down counter is drawn as

Step3: select the type of flip flop and draw the excitation table: JK flip-flops are selected and the
excitation table of a 3-bit up-down counter using JK flip-flops is drawn as shown in fig.

PS mode NS required excitations
Q3 Q2 Q1 M Q3 Q2 Q1 J3 K3 J2 K2 J1 K1
0 0 0 0 1 1 1 1 x 1 x 1 x
0 0 0 1 0 0 1 0 x 0 x 1 x
0 0 1 0 0 0 0 0 x 0 x x 1
0 0 1 1 0 1 0 0 x 1 x x 1
0 1 0 0 0 0 1 0 x x 1 1 x
0 1 0 1 0 1 1 0 x x 0 1 x
0 1 1 0 0 1 0 0 x x 0 x 1
0 1 1 1 1 0 0 1 x x 1 x 1
1 0 0 0 0 1 1 x 1 1 x 1 x
1 0 0 1 1 0 1 x 0 0 x 1 x

81

1 0 1 0 1 0 0 x 0 0 x x 1
1 0 1 1 1 1 0 x 0 1 x x 1
1 1 0 0 1 0 1 x 0 x 1 1 x
1 1 0 1 1 1 1 x 0 x 0 1 x
1 1 1 0 1 1 0 x 0 x 0 x 1
1 1 1 1 0 0 0 x 1 x 1 x 1

Step4: obtain the minimal expressions: From the excitation table we can conclude that J1=1 and
K1=1, because all the entries for J1and K1 are either X or 1. The K-maps for J3, K3,J2 and K2
based on the excitation table and the minimal expression obtained from them are shown in fig.

00 01 11 10
Q3Q2 Q1M

1
1

X X X X
X X X X

Step5: draw the logic diagram: a logic diagram using those minimal expressions can be drawn as
shown in fig.

Design of a synchronous modulo-6 gray cod counter:

Step 1: the number of flip-flops: we know that the counting sequence for a modulo-6 gray code
counter is 000, 001, 011, 010, 110, and 111. It requires n=3FFs (N≤2n, i.e., 6≤23). 3 FFs can have
8 states. So the remaining two states 101 and 100 are invalid. The entries for excitation
corresponding to invalid states are don‘t cares.
Step2: the state diagram: the state diagram of the mod-6 gray code converter is drawn as shown in
fig.

82

Step3: type of flip-flop and the excitation table: T flip-flops are selected and the excitation table of
the mod-6 gray code counter using T-flip-flops is written as shown in fig.

PS NS
required
excitations

Q3 Q2 Q1 Q3 Q2 Q1 T3 T2 T1
0 0 0 0 0 1 0 0 1
0 0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 0 1
0 1 0 1 1 0 1 0 0
1 1 0 1 1 1 0 0 1
1 1 1 0 0 0 1 1 1

Step4: The minimal expressions: the K-maps for excitations of FFs T3,T2,and T1 in terms of
outputs of FFs Q3,Q2, and Q1, their minimization and the minimal expressions for excitations
obtained from them are shown if fig

Step5: the logic diagram: the logic diagram based on those minimal expressions is drawn as shown
in fig.

83

Design of a synchronous BCD Up-Down counter using FFs:

Step1: the number of flip-flops: a BCD counter is a mod-10 counter has 10 states (0000 through
1001) and so it requires n=4FFs(N≤2n,, i.e., 10≤24). 4 FFS can have 16 states. So out of 16 states,
six states (1010 through 1111) are invalid. For selecting up and down mode, a control or mode
signal M is required. , it counts up when M=1 and counts down when M=0. The clock signal is
applied to all FFs.

Step2: the state diagram: The state diagram of the mod-10 up-down counter is drawn as shown in
fig.

Step3: types of flip-flops and excitation table: T flip-flops are selected and the excitation table of
the modulo-10 up down counter using T flip-flops is drawn as shown in fig.

The remaining minterms are don‘t cares(∑d(20,21,22,23,24,25,26,37,28,29,30,31)) from the
excitation table we can see that T1=1 and the expression for T4,T3,T2 are as follows.
T4=∑m(0,15,16,19)+d(20,21,22,23,24,25,26,27,28,29,30,31)

T3=∑m(7,15,16,8)+d(20,21,22,23,24,25,26,27,28,29,30,31)
T2=∑m(3,4,7,8,11,12,15,16)+d(20,21,22,23,24,25,26,27,28,29,30,31)

PS

mode

NS

required excitations
Q4 Q3 Q2 Q1 M Q4 Q3 Q2 Q1 T4 T3 T2 T1
0 0 0 0 0 1 0 0 1 1 0 0 1
0 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 1 1 0 0 1 0 0 0 1 1
0 0 1 0 0 0 0 0 1 0 0 1 1
0 0 1 0 1 0 0 1 1 0 0 0 1
0 0 1 1 0 0 0 1 0 0 0 0 1
0 0 1 1 1 0 1 0 0 0 1 1 1
0 1 0 0 0 0 0 1 1 0 1 1 1
0 1 0 0 1 0 1 0 1 0 0 0 1
0 1 0 1 0 0 1 0 0 0 0 0 1
0 1 0 1 1 0 1 1 0 0 0 1 1
0 1 1 0 0 0 1 0 1 0 0 1 1
0 1 1 0 1 0 1 1 1 0 0 0 1
0 1 1 1 0 0 1 1 0 0 0 0 1
0 1 1 1 1 1 0 0 0 1 1 1 1

84

1 0 0 0 0 0 1 1 1 1 1 1 1
1 0 0 0 1 1 0 0 1 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 0 1
1 0 0 1 1 0 0 0 0 1 0 0 1

Step4: The minimal expression: since there are 4 state variables and a mode signal, we require 5
variable kmaps. 20 conditions of Q4Q3Q2Q1M are valid and the remaining 12 combinations are
invalid. So the entries for excitations corresponding to those invalid combinations are don‘t cares.
Minimizing K-maps for T2 we get

T 2= Q4Q1‘M+Q4‘Q1M+Q2Q1‘M‘+Q3Q1‘M‘

Step5: the logic diagram: the logic diagram based on the above equation is shown in fig.

Shift register counters:
One of the applications of shift register is that they can be arranged to form several types of

counters. The most widely used shift register counter is ring counter as well as the twisted ring
counter.

Ring counter: this is the simplest shift register counter. The basic ring counter using D flip- flops
is shown in fig. the realization of this counter using JK FFs. The Q output of each stage is connected
to the D flip-flop connected back to the ring counter.

fig: logic diagram of 4-bit ring counter using D flip-flops

85

Only a single 1 is in the register and is made to circulate around the register as long as clock pulses
are applied. Initially the first FF is present to a 1. So, the initial state is 1000, i.e., Q1=1,
Q2=0,Q3=0,Q4=0. After each clock pulse, the contents of the register are shifted to the right by
one bit and Q4 is shifted back to Q1. The sequence repeats after four clock pulses. The number
of distinct states in the ring counter, i.e., the mod of the ring counter is equal to number of FFs used
in the counter. An n-bit ring counter can count only n bits, where as n-bit ripple counter can count
2n bits. So, the ring counter is uneconomical compared to a ripple counter but has advantage of
requiring no decoder, since we can read the count by simply noting which FF is set. Since it is
entirely a synchronous operation and requires no gates external FFs, it has the further advantage of
being very fast. Timing diagram:

Figure: state diagram
Twisted Ring counter (Johnson counter):

86

This counter is obtained from a serial-in, serial-out shift register by providing feedback
from the inverted output of the last FF to the D input of the first FF. the Q output of each is
connected to the D input of the next stage, but the Q‘ output of the last stage is connected to the D
input of the first stage, therefore, the name twisted ring counter. This feedback arrangement
produces a unique sequence of states.

The logic diagram of a 4-bit Johnson counter using D FF is shown in fig. the realization of
the same using J-K FFs is shown in fig.. The state diagram and the sequence table are shown in
figure. The timing diagram of a Johnson counter is shown infigure.

Let initially all the FFs be reset, i.e., the state of the counter be 0000. After each clock pulse,
the level of Q1 is shifted to Q2, the level of Q2to Q3, Q3 to Q4 and the level of Q4‘to Q1 and the
sequences given in fig.

Figure: Johnson counter with JK flip-flops

Figure: timing diagram
State diagram:

0

Q1 Q2

0

Q3

0

Q4

0

after
clock
pulse
0

87

1 0 0 0 9

1 0 0 0 1
1 1 0 0 2
1 1 1 0 3
1 1 1 1 4

0 1 1 1 5
0 0 1 1 6
0 0 0 1 7
0 0 0 0 8

Excitation table

Synthesis of sequential circuits:

The synchronous or clocked sequential circuits are represented by two models.

1. Moore circuit: in this model, the output depends only on the present state of the flip-
flops

2. Meelay circuit: in this model, the output depends on both present state of the flip- flop.
And the inputs.

Sequential circuits are also called finite state machines (FSMs). This name is due to the fast that
the functional behavior of these circuits can be represented using a finite number of states.

State diagram: the state diagram or state graph is a pictorial representation of the relationships
between the present state, the input, the next state, and the output of a sequential circuit. The state
diagram is a pictorial representation of the behavior of a sequential circuit.

The state represented by a circle also called the node or vertex and the transition between states
is indicated by directed lines connecting circle. a directed line connecting a circle with itself
indicates that the next state is the same as the present state. The binary number inside each circle
identifies the state represented by the circle. The direct lines are labeled with two binary numbers
separated by a symbol. The input value is applied during the present state is labeled after the
symbol.

88

NS,O/P
INPUTX

PS X=0 X=1 a a,0 b,0 b b,1 c,0 c d,0 c,1 d
d,0 a,1

fig :a) state diagram (meelay circuit) fig: b) state
table

In case of moore circuit ,the directed lines are labeled
with only one binary number representing the input

that causes the state transition. The output is indicated with
in the circle below the present state, because the output

depends only on the present state and not on the input.

NS
INPUT X

PS X=0 X=1 O/P a a b 0 b b c 0 c d c 1 d
a d 0

fig: a) state diagram (moore circuit) fig:b) state table

Serial binary adder:

Step1: word statement of the problem: the block diagram of a serial binary adder is shown in fig.
it is a synchronous circuit with two input terminals designated X1and X2 which carry the two
binary numbers to be added and one output terminal Z which represents the sum. The inputs and
outputs consist of fixed-length sequences 0s and 1s.the output of the serial Zi at time tiis a function
of the inputs X1(ti) and X2(ti) at that time ti-1 and of carry which had been generated at ti-
1. The carry which represent the past history of the serial adder may be a 0 or 1. The circuit has two
states. If one state indicates that carry from the previous addition is a 0, the other state indicates
that the carry from the previous addition is a 1

Figure: block diagram of serial binary adder

89

Step2 and 3: state diagram and state table: let a designate the state of the serial adder at ti if a
carry 0 was generated at ti-1, and let b designate the state of the serial adder at ti if carry 1 was
generated at ti-1 .the state of the adder at that time when the present inputs are applied is referred to
as the present state(PS) and the state to which the adder goes as a result of the new carry value is
referred to as next state(NS).
The behavior of serial adder may be described by the state diagram and state table.

PS NS ,O/P
X1 X2

0 0 1 1
0 1 0 1

A A,0 B,0 B,1 B,0
B A,1 B,0 B,0 B,1

Figures: serial adder state diagram and state table

If the machine is in state B, i.e., carry from the previous addition is a 1, inputs X1=0 and X2=1 gives
sum, 0 and carry 1. So the machine remains in state B and outputs a 0. Inputs X1=1 and X2=0 gives
sum, 0 and carry 1. So the machine remains in state B and outputs a 0. Inputs X1=1 and X2=1 gives
sum, 1 and carry 0. So the machine remains in state B and outputs a 1. Inputs X1=0 and X2=0 gives
sum, 1 and carry 0. So the machine goes to state A and outputs a 1. The state table also gives the
same information.

Setp4: reduced standard from state table: the machine is already in this form. So no need to do
anything

Step5: state assignment and transition and output table:
The states, A=0 and B=1 have already been assigned. So, the transition and output table is as

shown.

PS NS O/P
0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 1 0 1 1 1
1 0 1 1 1 1 0 0 1

STEP6: choose type of FF and excitation table: to write table, select the memory element the
excitation table is as shown in fig.

PS I/P NS I/P-FF O/P y x1 x2 Y D Z
0 0 0 0 0 0 0 0

1 0 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1

90

1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 1 1

Sequence detector:

Step1: word statement of the problem: a sequence detector is a sequential machine which produces
an output 1 every time the desired sequence is detected and an output 0 at all other times

Suppose we want to design a sequence detector to detect the sequence 1010 and say that
overlapping is permitted i.e., for example, if the input sequence is 01101010 the corresponding
output sequence is 00000101.

Step2 and 3: state diagram and state table: the state diagram and the state table of the sequence
detector. At the time t1, the machine is assumed to be in the initial state designed arbitrarily as A.
while in this state, the machine can receive first bit input, either a 0 o r a 1. If the input bit is 0,
the machine does not start the detection process because the first bit in the desired sequence is a

1. If the input bit is a 1 the detection process starts.

PS
X=0

A A,0

NS,Z
X=1
B,0

B C,0 B,0
C A,0 D,0
D C,1 B,0

Figure: state diagram and state table of sequence detector
So, the machine goes to state B and outputs a 0. While in state B, the machinery may receive 0 or
1 bit. If the bit is 0, the machine goes to the next state, say state c, because the previous two bits
are 10 which are a part of the valid sequence, and outputs 0.. if the bit is a 1, the two bits become
11 and this not a part of the valid sequence

Step4: reduced standard form state table: the machine is already in this form. So no need to do
anything.

Step5: state assignment and transition and output table: there are four states therefore two states
variables are required. Two state variables can have a maximum of four states, so, all states are
utilized and thus there are no invalid states. Hence, there are no don‘t cares. Let a=00, B=01, C=10
and D=11 be the state assignment.

NS(Y1Y2) O/P(z)
PS(y1y2 X=0 X=1 X=0 X=1

A= 0 0 0 0 0 1 0 0
B=0 1 1 0 0 1 0 0
C=1 0 0 0 1 1 0 0

D=1 1 1 1 0 1 1 0

91

Step6: choose type of flip-flops and form the excitation table: select the D flip-flops as memory
elements and draw the excitation table.

INPUTS -
PS I/P NS FFS O/P
y1 Y2 X Y1 Y2 D1 D2 Z
0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0
0 1 1 0 1 0 1 0
1 0 0 0 0 0 0 0
1 0 1 1 1 1 1 0
1 1 0 1 0 1 0 1
1 1 1 0 1 0 1 0

Step7: K-maps and minimal functions: based on the contents of the excitation table , draw the k-
map and simplify them to obtain the minimal expressions for D1 and D2 in terms of y1, y2 and x
as shown in fig. The expression for z (z=y1,y2) can be obtained directly from table

Step8: implementation: the logic diagram based on these minimal expressions
UNIT-V

CAPABILITIES AND MINIMIZATION OF SEQUENTIAL MACHINES

Finite State Machine:

Finite state machine can be defined as a type of machine whose past histories can affect its future
behavior in a finite number of ways. To clarify, consider for example of binary full adder. Its output
depends on the present input and the carry generated from the previous input. It may have a large
number of previous input histories but they can be divided into two types: (i) Input

The most general model of a sequential circuit has inputs, outputs and internal states. A
sequential circuit is referred to as a finite state machine (FSM). A finite state machine is abstract
model that describes the synchronous sequential machine. The fig. shows the block diagram of a
finite state model. X1, X2,….., Xl, are inputs. Z1, Z2,….,Zm are outputs. Y1,Y2,….Yk are state

variables, and Y1,Y2,….Yk represent the next state.

92

Capabilities and limitations of finite-state machine

Let a finite state machine have n states. Let a long sequence of input be given to the machine. The
machine will progress starting from its beginning state to the next states according to the state
transitions. However, after some time the input string may be longer than n, the number of states.
As there are only n states in the machine, it must come to a state it was previously been in and from
this phase if the input remains the same the machine will function in a periodically repeating
fashion. From here a conclusion that ‗for a n state machine the output will become periodic after
a number of clock pulses less than equal to n can be drawn. States are memory elements. As for a
finite state machine the number of states is finite, so finite number of memory elements are required
to design a finite state machine.

Limitations:

1. Periodic sequence and limitations of finite states: with n-state machines, we can generate
periodic sequences of n states are smaller than n states. For example, in a 6-state machine,
we can have a maximum periodic sequence as 0,1,2,3,4,5,0,1….

2. No infinite sequence: consider an infinite sequence such that the output is 1 when and only
when the number of inputs received so far is equal to P(P+1)/2 for P=1,2,3….,i.e., the
desired input-output sequence has the following form:

Input: x
Output: 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

Such an infinite sequence cannot be produced by a finite state machine.
3. Limited memory: the finite state machine has a limited memory and due to limited memory

it cannot produce certain outputs. Consider a binary multiplier circuit for multiplying two
arbitrarily large binary numbers. The memory is not sufficient to store arbitrarily large
partial products resulted during multiplication.
Finite state machines are two types. They differ in the way the output is generate they are:
a) Mealy type model: in this model, the output is a function of the present state and the
present input.
b) Moore type model: in this model, the output is a function of the present state only.

Mathematical representation of synchronous sequential machine:
The relation between the present state S(t), present input X(t), and next state s(t+1) can be given
as

S(t+1)= f{S(t),X(t)}

93

The value of output Z(t) can be given as Z(t)= g{S(t),X(t)} for mealy model Z(t)= G{S(t)} for
Moore model

Because, in a mealy machine, the output depends on the present state and input, where as in a
Moore machine, the output depends only on the present state.

Comparison between the Moore machine and mealy machine:

Moore machine Mealy machine
1. its output is a function of present
state only Z(t)= g{S(t)}

1. its output is a function of present state
as well as present input Z(t)=g{S(t),X(t)}

2. input changes do not affect the
output

2. input changes may affect the output of
the circuit

3. it requires more number of states
for implementing same function

3. it requires less number of states for
implementing same function

Mealy model:

When the output of the sequential circuit depends on the both the present state of the flip-flops
and on the inputs, the sequential circuit is referred to as mealy circuit or mealy machine. The fig.
shows the logic diagram of the mealy model. Notice that the output depends up on the present state
as well as the present inputs. We can easily realize that changes in the input during the clock pulse
cannot affect the state of the flip-flop. They can affect the output of the circuit. If the input
variations are not synchronized with a clock, he derived output will also not be synchronized with
the clock and we get false output. The false outputs can be eliminated by allowing input to change
only at the active transition of the clock.

Fig: logic diagram of a mealy model

The behavior of a clocked sequential circuit can be described algebraically by means of state
equations. A state equation specifies the next state as a function of the present state and inputs. The
mealy model shown in fig. consists of two D flip-flops, an input x and an output z. since the D
input of a flip-flop determines the value of the next state, the state equations for the model can be
written as

Y1 (t+1)=y1(t)x(t)+y2(t)x(t)
Y2(t+1)= 1(t)x(t)

And the output equation is

94

Z(t)={ y1(t)+y2(t)} X‘(t)
Where y(t+1) is the next state of the flip-flop one clock edge later, x(t) is the present input, and z(t)
is the present output. If y1(t+1) are represented by y1(t) and y2(t) , in more compact form, the
equations are

Y1(t+1)=y1=y1x+y2x
Y2(t+1)=y2=y1‘x Z=(y1+y2)x‘

The stable table of the mealy model based on the above state equations and output equation is
shown in fig. the state diagram based on the state table is shown in fig.

In general form, the mealy circuit can be represented with its block schematic as shown in below
fig.

Moore model: when the output of the sequential circuit depends up only on the present state of the
flip-flop, the sequential circuit is referred as to as the Moore circuit or the Moore machine.
Notice that the output depend only on the present state. It does not depend upon the input at all.

The input is used only to determine the inputs of flip-flops. It is not used to determine the output.
The circuit shown has two T flip-flops, one input x, and one output z. it can be described
algebraically by two input equations an output equation.

T1=y2x
T2=x
Z=y1y2

95

The characteristic equation of a T-flip-flop is
Q(t+1)=TQ‘+T‘Q

The values for the next state can be derived from the state equations by substituting T1 and T2 in
the characteristic equation yielding

Y1(t+1)=Y1=(y2x) =(2)y1+(y2x) 1
= y1 2+ y1 + 1y2x

= y2 (t+1)= y2= x 2+ y2

The state table of the Moore model based on the above state equations and outpu t equation is
shown in fig.

In general form , the Moore circuit can be represented with its block schematic as shown in below
fig.

96

Figure: moore circuit model:

Figure: moore circuit model with an output decoder
Mealy and Moore

• Sequential machines are typically classified as either a Mealy machine or a Moore machine
implementation.

• Moore machine: The outputs of the circuit depend only upon the current state ofthe circuit.
• Mealy machine: The outputs of the circuit depend upon both the current state of the circuit

and the inputs.

An example to go through the steps
The specification: The circuit will have one input, X, and one output, Z. The output Z will be 0
except when the input sequence 1101 are the last 4 inputs received on X. In that case it will be a
1
Generation of a state diagram

• Create states and meaning for them.
State A – the last input was a 0 and previous inputs unknown. Can also be the reset state. State
B – the last input was a 1 and the previous input was a 0. The start of a new sequence
possibly.

• Capture this in a state diagram

97

Capture this in a state diagram

Circles represent the states
Lines and arcs represent the transition betweenstates.
The notation Input/output on the line or arc specifies the input that causes this transition and
the output for this change of state.

• Add a state C – Have detected the input sequence 11 which is the start of thesequence

Add a state D
State D – have detected the 3rd input in the start of a sequence, a 0, now having 110.
From State D, if the next input is a 1 the sequence has been detected and a 1 is
output.

The previous diagram was incomplete.

In each state the next input could be a 0 or a 1. This must be includedThe state table

• This can be done directly from the state diagram

98

• Now need to do a state assignment Select a state assignment

• Will select a grayencoding
• For this state A will be encoded 00, state B 01, state C 11 and state D 10

Flip-flop input equations

• Generate the equations for the flip-flop inputs
• Generate the D0 equation

• Generate the D1 equation

99

The output equation
• The next step is to generate the equation for the output Z and what is needed to generate it.
• Create a K-map from the truth table.

Now map to a circuit

• The circuit has 2 D type F/Fs

Important definitions and theorems:
A). Finite state machine-definitions:
Consider the state diagram of a finite state machine shown in fig. it is five-state machine with

one input variable and one output variable.

Successor: looking at the state diagram when present state is A and input is 1, the next state is D.
this condition is specified as D is the successor of A. similarly we can say that A is the 1 successor

100

A

of B, and C,D is the 11 successor of B and C, C is the 00 successor of A and D, D is the 000
successor of A,E, is the 10 successor of A or 0000 successor of A and so on.

Terminal state: looking at the state diagram , we observe that no such input sequence exists which
can take the sequential machine out of state E and thus state E is said to be a terminal state.

Strongly-connected machine: in sequential machines many times certain subsets of states may not
be reachable from other subsets of states. Even if the machine does not contain any terminal state.
If for every pair of states si, sj, of a sequential machine there exists an input sequence which takes
the machine M from si to sj, then the sequential machine is said to be strongly connected.

B). state equivalence and machineminimization:

In realizing the logic diagram from a stat table or state diagram many times we come across
redundant states. Redundant states are states whose functions can be accomplished by other
states. The elimination of redundant states reduces the total number of states of the machines
which in turn results in reduction of the number of flip-flops and logic gates, reducing the cost
of the final circuit.

Two states are said to be equivalent. When two states are equivalent, one of them can be
removed without altering the input output relationship.

State equivalence theorem: it states that two states s1, and s2 are equivalent if for every possible
input sequence applied. The machine goes to the same next state and generates the same output.
That is
If S1(t+1)= s2(t+1) and z1=z2, then s1=s2

C). distinguishable states and distinguishingsequences:

Two states sa, and sb of a sequential machine are distinguishable, if and only if there exists at
least one finite input sequence which when applied to the sequential machine causes different
outputs sequences depending on weather sa or sb is the initial state.
Consider states A and B in the state table, when input X=0, their outputs are 0 and 1 respectively
and therefore, states A and B are called 1-distinguishabke. Now consider states A and E . the
output sequence is as follows.

X=0 C,0 and E D, 0 ; outputs are the same

C E,0 and D b,1 ; outputs aredifferent

Here the outputs are different after 2-state transition and hence states A and E are 2- distungishable.
Again consider states A and C . the output sequence is as follows:

X=0 A C,0 and C E, 0; outputs are the same C E,0 and

E D,0 ; outputs are the same E D,0 and D B,1 ;

outputs are

101

different

Here the outputs are different after 3- transition and hence states A and B are 3-distuingshable. the
concept of K- distuingshable leads directly to the definition of K-equivalence. States that are not
K-distinguishable are said to be K-equivalent.

Truth table for Distunigshable states:

PS NS,Z
X=0 X=1

A C,0 F,0
B D,1 F,0
C E,0 B,0
D B,1 E,0
E D,0 B,0
F D,1 B,0

Merger Chart Methods:

Merger graphs:

The merger graph is a state reducing tool used to reduce states in the incompletely specified
machine. The merger graph is defined as follows.

1. Each state in the state table is represented by a vertex in the merger graph. So it contains
the same number of vertices as the state table contains states.

2. Each compatible state pair is indicated by an unbroken line draw between the two state
vertices

3. Every potentially compatible state pair with non-conflicting outputs but with different next
states is connected by a broken line. The implied states are written in theline break between
the two potentially compatible states.

4. If two states are incompatible no connecting line is drawn.

Consider a state table of an incompletely specified machine shown in fig. the corresponding
merger graph shown in fig. State table:

PS
I1
A

I2
…

NS,Z
I3
E,1

I4
B,1 ….

B … D,1 … F,1
C F,1 … … …
D … … C,1 …
E C,0 … A,0 F,1

F D,0 A,1 B,0 …

102

a) Merger graph b) simplified merger graph

States A and B have non-conflicting outputs, but the successor under input I2are compatible only
if implied states D and E are compatible. So, draw a broken line from A to B with DE written in
between states A and C are compatible because the next states and output entries of states A and C
are not conflicting. Therefore, a line is drawn between nodes A and C. states A and D have
nonconflicting outputs but the successor under input I3 are B and C. hence join A and D by a broken
line with BC entered In between.

Two states are said to be incompatible if no line is drawn between them. If implied states are
incompatible, they are crossed and the corresponding line is ignored. Like, implied states D and E
are incompatible, so states A and B are also incompatible. Next, it is necessary to check whether
the incompatibility of A and B does not invalidate any other broken line. Observe that states E and
F also become incompatible because the implied pair AB is incompatible. The broken lines which
remain in the graph after all the implied pairs have been verified to be compatible are regarded as
complete lines.
After checking all possibilities of incompatibility, the merger graph gives the following seven
compatible pairs.

These compatible pairs are further checked for further compatibility. For example, pairs
(B,C)(B,D)(C,D) are compatible. So (B, C, D) is also compatible. Also pairs (A,c)(A,D)(C,D) are
compatible. So (A,C,D) is also compatible. . In this way the entire set of compatibles of sequential
machine can be generated from its compatible pairs.
To find the minimal set of compatibles for state reduction, it is useful to find what are called the
maximal compatibles. A set of compatibles state pairs is said to be maximal, if it is not completely
covered by any other set of compatible state pairs. The maximum compatible can be found by
looking at the merger graph for polygons which are not contained within any higher order complete
polygons. For example only triangles (A, C,D) and (B,C,D) are of higher order. The set of maximal
compatibles for this sequential machine given as

103

Example:

104

Figure: state table

State Minimization:
Completely Specified Machines

• Two states, si and sj of machine M are distinguishable if and only if there exists a finite
input sequence which when applied to M causes different output sequences dependingon
whetherM started in si or sj.

• Such a sequence is called a distinguishing sequence for (si, sj).
• If there exists a distinguishing sequence of length k for (si, sj), they are said to be k-

distinguishable.

EXAMPLE:

• states A and B are 1-distinguishable, since a 1 input applied to A yields an output 1, versus
an output 0 from B.

• states A and E are 3-distinguishable, since input sequence 111 applied to A yieldsoutput
100, versus an output 101 from E.

• States si and sj (si ~ sj) are said to be equivalent iff no distinguishing sequence exists for
(si, sj).

• If si ~ sj and sj ~ sk, then si ~ sk. So state equivalence is an equivalence relation (i.e. it is a
reflexive, symmetric and transitiverelation).

• An equivalence relation partitions the elements of a set into equivalence classes.
• Property: If si ~sj, their corresponding X-successors, for all inputs X, are also equivalent.
• Procedure: Group states ofM so that two states are in the same group iff they are equivalent

(forms a partition of the states).

Completely Specified Machines

105

Pi : partition using distinguishing sequences of length i.
Partition: Distinguishing Sequence:
P0= (A B C D E F)
P1 = (A C E)(B D F) x =1
P2 = (A C E)(B D)(F) x =1; x =1
P3 = (A C)(E)(B D)(F) x =1; x =1; x =1
P4= (A C)(E)(B D)(F)
Algorithm terminates when Pk= PK+1Outline
of state minimization procedure:

• All states equivalent to each other form an equivalence class. These may becombined into
one state in the reduced (quotient) machine.

• Start an initial partition of a single block. Iteratively refine this partition by separating the
1-distinguishable states, 2-distinguishable states and soon.

• To obtain Pk+1, for each block Bi of Pk, create one block of states that not 1- distinguishable
within Bi , and create different blocks states that are 1-distinguishable within Bi .

Theorem: The equivalence partition is unique.
Theorem: If two states, si and sj, of machine M are distinguishable, then they are(n-1)-
distinguishable, where n is the number of states in M.
Definition: Two machines, M1 and M2, are equivalent (M1 ~M2) if, for every state in M1

there is a corresponding equivalent state in M2 and vice versa.

Theorem. For every machine M there is a minimum machine Mred ~ M. Mred is unique up to
isomorphism.

106

t
t

State Minimization of CSMs: Complexity
Algorithm DFA ~ DFAmin

Input: A finite automaton M = (Q, , , q 0, F) with no unreachable states.
Output: A minimum finite automaton M‘ = (Q’, , ‘, q ‘0, F’).Method:
1. t :=2; Q0:= { undefined }; Q1:=F; Q2:= Q\F.
2. while there is 0 < i t, a with (Qi,a) Qj, for all j do (a) Choose such an i, a ,
and j with (Qi,a) Qj .

end.

(b) Qt +1 := {q Qi | (q,a) Qj };
Qi := Qi \ Qt +1; t
:= t +1.

3. (* Denote [q] the equivalence class of state q , and {Qi} the set of all equivalence classes.
*)

Q’ := {Q1, Q2, ..., Qt }. q
‘0 := [q0].
F’ := { [q] Q’ | q F }.
’ ([q], a) := [(q,a)] for all q Q, a

Standard implementation: O (kn 2), where n =|Q| and k = | |Modification
of the body of the while loop:
1. Choose such an i, a , and choose j1,j2
(Qi,a) Qj2 .

with j1 j2, (Qi,a) Qj1 , and

2. If |{q Qi | (q,a) Qj1}| |{q Qi | (q,a) Qj2}|

then Qt +1 := {q Qi | (q,a) Qj1 } else

.

t

107

Qt +1 := {q Qi | (q,a) Qj2 } fI;
Qi := Qi \ Qt+1; t := t +1.
(i.e. put smallest set in t +1)

Note: |Qt +1| 1/2|Qi|. Therefore, for all q Q, the name of the class which contains a given
state q changes at most log(n) times.
Goal: Develop an implementation such that all computations can be assigned to transitions
containing a state for which the name of the corresponding class is changed.
Suitable data structures achieve an O (kn log n) implementation.
State Minimization:
Incompletely Specified Machines
Statement of the problem: given an incompletely specified machineM, find a machineM’ such
that:

– on any input sequence, M’ produces the same outputs as M, whenever M is
specified.

– there does not exist a machine M’’ with fewer states than M’ which has the same
property

MachineM:

Attempt to reduce this case to usual state minimization of completely specified machines.

• Brute Force Method: Force the don‘t cares to all their possible values and choosethe
smallest of the completely specified machines so obtained.

• In this example, it means to state minimize two completely specified machines obtained
from M, by setting the don‘t care to either 0 and 1.

Suppose that the - is set to be a 0.

• States s1 and s2 are equivalent if s3 and s2 are equivalent, but s3 and s2 assert different
outputs under input 0, so s1 and s2 are not equivalent.

• States s1 and s3 are not equivalent either.

• So this completely specified machine cannot be reduced further (3 states is the minimum).

Suppose that the - is set to be a 1.

• States s1 is incompatible with both s2 and s3.
• States s3 and s2 are equivalent.
• So number of states is reduced from 3 to 2.

MachineM’’red :

Can this always be done? Machine
M:

MachineM2 and M3 are formed by filling in the unspecified entry in M with 0 and 1, respectively.

Both machines M2 and M3 cannot be reduced.
Conclusion?: M cannot be minimized further!
But is it a correct conclusion?
Note: that we want to ‗merge‘ two states when, for any input sequence, they generate the same
output sequence, but only where both outputs are specified.
Definition: A set of states is compatible if they agree on the outputs where they are all specified.
MachineM’’ :

In this case we have two compatible sets: A = (s1, s2) and B = (s3, s2). A reduced machine Mred
can be built as follows. Machine Mred

A set of compatibles that cover all states is: (s3s6), (s4s6), (s1s6), (s4s5), (s2s5).
But (s3s6) requires (s4s6),

(s4s6) requires(s4s5), (s4s5) requires (s1s5),
(s1s6) requires (s1s2), (s1s2) requires (s3s6),
(s2s5) requires (s1s2).

So, this selection of compatibles requires too many other compatibles...

• Another set of compatibles that covers all states is (s1s2s5), (s3s6), (s4s5). But (s1s2s5)
requires (s3s6) (s3s6) requires (s4s6)

• (s4s6) requires (s4s5) (s4s5) requires (s1s5).
• So must select also (s4s6) and (s1s5).
• Selection of minimum set is a binate covering problem

When a next state is unspecified, the future behavior of the machine is unpredictable. This suggests the
definition of admissible input sequence.

Definition. An input sequence is admissible, for a starting state of a machine if no unspecified
next state is encountered, except possibly at the final step.

Definition. State si of machineM1 is said to cover, or contain, state sj ofM2 provided
1. every input sequence admissible to sj is also admissible to si , and
2. its application to both M1 and M2 (initially is si and sj, respectively) results in

identical output sequences whenever the outputs ofM2 are specified.

VIDYAPITH ACADEMY

A unit ofAITDC (OPC) PVT. LTD.

IAF Accredited An ISO 9001:2015 Certified Institute.

Registered Under Ministry of Corporate Affairs

(CIN U80904AS2020OPC020468)

Registered Under MSME, Govt. of India. (UAN- AS04D0000207).

Registered Under MHRD (CR Act) Govt. of India.

	UNIT-I
	HISTORY OF THE NUMERAL SYSTEMS:
	BINARY
	Binary codes
	Reflective Code
	Sequential Codes
	Non weighted codes
	Excess-3 Code
	Gray Code
	Binary to Gray Conversion
	Error detection codes
	2)Checksums
	3)Cyclic redundancy checks (CRCs)
	NUMBER BASE CONVERSIONS
	Decimal to Binary
	Error Detection and Correction Codes
	UNIT-II
	•Fundamental postulates of Boolean algebra
	•Switching functions
	•Algebraic simplification digital logic gates, prop
	•Multilevel NAND/NOR realizations
	ASSOCIATIVE LAW:
	COMMUTATIVE LAW:
	IDENTITY ELEMENT:
	BASIC IDENTITIES OF BOOLEAN ALGEBRA
	DeMorgan's Theorem
	LOGIC GATES
	K- map Simplification
	A Three-Variable Karnaugh Map
	Reading the MSP from the K-map
	K-map Simplification of SoP Expressions
	Four-variable K-maps – f(W,X,Y,Z)
	PoS Optimization
	SoP Optimization from PoS
	K-map Summary
	UNIT-III
	Combinational Logic
	Design Procedure:
	Adders:
	The Full Adder:
	Subtractors:
	The Half-Subtractor:
	The Full-Subtractor:
	Binary Parallel Adder:
	Ripple carry adder:
	4- Bit Parallel Subtractor:
	Binary-Adder Subtractor:
	The Look-Ahead –Carry Adder:
	2’s complement Addition and Subtraction using Para
	Serial Adder:
	Difference between Serial and Parallel Adders:
	BCD Adder:
	EXCESS-3 (XS-3) ADDER:
	Excess-3 (XS-3) Subtractor:
	Binary Multipliers:
	Code converters:
	Design of a 4-bit binary to gray code converter:
	Design of a 4-bit BCD to XS-3 code converter:
	Design of a SOP circuit to Detect the Decimal numb
	Design of a Combinational circuit to produce the 2
	1.Magnitude Comparator:
	4-Bit Magnitude Comparator:
	ENCODERS:
	Decimal to BCD Encoder:
	UNIT-IV SEQUENTIAL CIRCUITS
	Comparison between combinational and sequential ci
	Synchronous and Asynchronous Operation:
	Fundamental Mode Circuits assumes that:
	A pulse mode circuit assumes that:
	Latches and flip-flops
	Figure: basic symbol of flipflop
	SR latch:
	NAND latch
	NOR latch
	RS Flip-flop:
	Figure: RS Flip-flop
	Operation:
	Edge triggered RS flip-flop:
	Figure: Edge triggered RS flip-flop D
	Edge Triggered D Flip-flop:
	Figure: JK flip-flop
	Operation:
	T flip-flop:
	Flip flop operating characteristics:
	Applications of flip-flops:
	Excitation Tables:
	Convert a D-FF to a T-FF:
	Convert a RS-FF to a D-FF:
	Convert a RS-FF to a JK-FF:
	The Master-Slave JK Flip-flop:
	Sequential Circuit Design
	Shift registers:
	Buffer register:
	Figure: logic diagram of 4-bit buffer register
	Controlled buffer register:
	Data transmission in shift registers:
	Serial IN, serial OUT, shift right, shift left reg
	Serial-in, parallel-out, shift register:
	Parallel-in, serial-out, shift register:
	Parallel-in, parallel-out, shift register
	Bidirectional shift register:
	Figure: logic diagram of a 4-bit bidirectional shi
	Figure: logic diagram 4-bit universal shift regist
	Asynchronous counters:
	Two-bit ripple up-counter using negative edge trig
	Two-bit ripple up-down counter using negative edge
	Design of Asynchronous counters:
	Design of a Mod-6 asynchronous counter using T FFs
	Design of a mod-10 asynchronous counter using T-fl
	Synchronous counters:
	Design of synchronous counters:
	Design of a synchronous 3-bit up-down counter usin
	Design of a synchronous modulo-6 gray cod counter:
	Design of a synchronous BCD Up-Down counter using
	Shift register counters:
	Figure: state diagram Twisted Ring counter (Johnso
	State diagram:
	Synthesis of sequential circuits:
	Serial binary adder:
	Figure: block diagram of serial binary adder
	Step5: state assignment and transition and output
	PS NSO/P
	 0101 01 01
	Sequence detector:
	INPUTS -
	UNIT-V
	Finite State Machine:
	Capabilities and limitations of finite-state machi
	Comparison between the Moore machine and mealy mac
	Mealy and Moore
	An example to go through the steps
	Generation of a state diagram
	Flip-flop input equations
	The output equation
	A).Finite state machine-definitions:
	B).state equivalence and machineminimization:
	C).distinguishable states and distinguishingsequences
	Truth table for Distunigshable states:
	Merger Chart Methods:
	Example:
	State Minimization:
	Completely Specified Machines
	State Minimization of CSMs: Complexity Algorithm D
	State Minimization:
	Machine M:
	Suppose that the - is set to be a 0.
	Suppose that the - is set to be a 1.
	Can this always be done? Machine

